With the progress of urbanization and industrialization in China, the consumption of fossil fuels blows up. The burning of fossil fuels releases large amounts of particulate matter, leads to smog, and the air quality is gradually getting worsen. Previous studies have shown that vegetation can effectively reduce airborne particles with different size fractions. And large amounts of previous studies pointed to the adsorption ability of urban forest for particles larger than 2.5 μm. The capacity of roadside plants for the capture of fine particles, especially for those smaller than 2.5 μm has been rarely reported. In this study, five external factors including leaf orientation, leaf height, planting location, planting form, and pollution concentration were tested to evaluate their impact on the dust retention capacity of different roadside plants. The results indicate that significant interspecies was found between tested plant species, and with the change of different external factors, the capturing capacity for the same roadside plants varied. The change of leaf orientation has limited effects on the amount of captured fine particles for the tested plants. While, the amount of captured particulate matter by leaves was inversely proportional to its growth height. Plants locating in the central of the road showed significantly higher capturing capacity than they, when they was set alongside the road. The total amount of captured fine particle by locating in the central green belt of road was about 5 times higher than it when it was planted in the green belt alongside the road. In addition, the correlation between the capturing capacity of roadside plants and its distance to the street curb was found to be negative.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2023.2207653DOI Listing

Publication Analysis

Top Keywords

roadside plants
20
capacity roadside
16
external factors
12
capturing capacity
12
amount captured
12
fossil fuels
8
large amounts
8
particulate matter
8
previous studies
8
fine particles
8

Similar Publications

Premise: Phelipanche ramosa is an economically damaging parasitic plant that has been reported in North America since the late 1800s. While this species comprises a variety of genetically distinct host races in its native range, the genetic composition of adventive populations in the New World remains unexplored. On the basis of morphological and ecological variation, some have suggested that the closely related P.

View Article and Find Full Text PDF

First Report of Causing Heart Rot Disease of in China.

Plant Dis

December 2024

Dalian Minzu University, College of Environment and Resources, Liaohe West Road No.8, Dalian Economic and Technological Developing Zone, Dalian, China, 116600;

Styphnolobium japonicum (L.) Schott, is an ornamental species of Leguminosae, widely planted as a roadside tree in north regions of China (Kite et al. 2007).

View Article and Find Full Text PDF

First report of foliar blight of castor bean caused by in Sinaloa, Mexico.

Plant Dis

December 2024

Universidad Autónoma de Occidente, CIENCIAS NATURALES Y EXACTAS , Carret. Internacional y Boulevard Macario Gaxiola, S/N, Los Mochis, Los Mochis, Sinaloa, Mexico, 81200.

Article Synopsis
  • Castor bean, known scientifically as Ricinus communis, is grown for its oil and ornamental purposes, particularly for its attractive foliage, and has naturalized in places like Sinaloa, Mexico.
  • A 2019 survey found that wild castor bean in Sinaloa was significantly impacted by a foliar blight resembling that caused by the fungus Alternaria ricini, with disease incidence varying between 20% to 60% across different sites.
  • Samples collected revealed that long-beaked Alternaria was present in 60% to 70% of the leaf fragments tested, with distinct morphological characteristics aligning with descriptions of A. ricini, indicating a potential link between the disease observed in Sinaloa and previously noted occurrences in the
View Article and Find Full Text PDF

A checklist of Lesvos Island's non-native vascular flora is presented. Through the literature and a roadside survey, we recorded 187 non-native plant taxa, representing 12% of the total regional flora. A total of 37 taxa were reported for the first time for Lesvos, including three taxa that are also new to the Greek non-native flora.

View Article and Find Full Text PDF

The effects of polycyclic aromatic hydrocarbons on ecological assembly processes and co-occurrence patterns differ between soil bacterial and fungal communities.

J Hazard Mater

November 2024

School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Jinzhong 030600, Shanxi, China. Electronic address:

Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic pollutants prevalent in soil ecosystems. Bacteria and fungi play important roles in the degradation of PAHs in the soils. However, little is known about the differences between the bacterial and fungal community assemblies in PAH-contaminated soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!