Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The spot position is an important beam parameter in the quality assurance of scanning proton therapy. In this study, we investigated dosimetric impact of systematic 15 spot position errors (SSPE) in spot scanning proton therapy using three types of optimization methods of head and neck tumor.
Materials And Methods: The planning simulation was performed with ± 2 mm model SSPE in the X and Y directions. Treatment plans were created using intensity-modulated proton therapy (IMPT) and single-field uniform dose (SFUD). IMPT plans were created by two optimization methods: with worst-case optimization (WCO-IMPT) and without (IMPT). For clinical target volume (CTV), D95%, D50%, and D2cc were used for analysis. For organs at risk (OAR), Dmean was used to analyze the brain, cochlea, and parotid, and Dmax was used to analyze brainsetem, chiasm, optic nerve, and cord.
Results: For CTV, the variation (1 standard deviation) of D95% was ± 0.88%, 0.97% and 0.97% to WCO-IMPT, IMPT, and SFUD plan. The variation of D50% and D2cc of CTV showed <0.5% variation in all plans. The dose variation due to SSPE was larger in OAR, and worst-case optimization reduced the dose variation, especially in Dmax. The analysis results showed that SSPE has little impact on SFUD.
Conclusions: We clarified the impact of SSPE on dose distribution for three optimization methods. SFUD was shown to be a robust treatment plan for OARs, and the WCO can be used to increase robustness to SSPE in IMPT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/jcrt.jcrt_389_21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!