Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wearable ionoskins are one of the representative examples of the many useful applications offered by deformable stimuli-responsive sensory platforms. Herein, ionotronic thermo-mechano-multimodal response sensors are proposed, which can independently detect changes in temperature and mechanical stimuli without crosstalk. For this purpose, mechanically robust, thermo-responsive ion gels composed of poly(styrene-ran-n-butyl methacrylate) (PS-r-PnBMA, copolymer gelator) and 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([BMI][TFSI], ionic liquid) are prepared. The optical transmittance change arising from the lower critical solution temperature (LCST) phenomenon between PnBMA and [BMI][TFSI] is exploited to track the external temperature, creating a new concept of the temperature coefficient of transmittance (TCT). The TCT of this system (-11.5% °C ) is observed to be more sensitive to temperature fluctuations than the conventional metric of temperature coefficient of resistance. The tailoring molecular characteristics of gelators selectively improved the mechanical robustness of the gel, providing an additional application opportunity for strain sensors. This functional sensory platform, which is attached to a robot finger, can successfully detect thermal and mechanical environmental changes through variations in the optical (transmittance) and electrical (resistance) properties of the ion gel, respectively, indicating the high practicality of on-skin multimodal wearable sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202301868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!