Background: Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients.

Methods: We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA).

Results: TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission.

Conclusions: The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161166PMC
http://dx.doi.org/10.1186/s12931-023-02426-1DOI Listing

Publication Analysis

Top Keywords

immune response
8
early inflammatory
8
late inflammatory
8
damage markers
8
lactate dehydrogenase
8
severity mortality
8
critical patients
8
patients non-survivors
8
il-6 levels
8
inflammatory phase
8

Similar Publications

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Developing an effective vaccine for haemorrhagic septicaemia (HS) in cattle and buffaloes is urgently needed. While preferred for their safety, achieving sufficient, cross-protective, and long-lasting immunity is still challenging when administering inactivated vaccines. This study aimed to assess the efficacy of four inactivating components comprising three inactivating agents: (1) Binary ethylenimine (BEI), (2) Formalin, (3) a combination of BEI and Formalin, and (4) Hydrogen peroxide (HO), in inactivating Pasteurella multocida to enhance HS vaccine potency.

View Article and Find Full Text PDF

Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy.

Tissue Eng Regen Med

January 2025

Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.

Background: Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!