A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Room temperature phosphorescence from natural wood activated by external chloride anion treatment. | LitMetric

Room temperature phosphorescence from natural wood activated by external chloride anion treatment.

Nat Commun

Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China.

Published: May 2023

Producing afterglow room temperature phosphorescence (RTP) from natural sources is an attractive approach to sustainable RTP materials. However, converting natural resources to RTP materials often requires toxic reagents or complex processing. Here we report that natural wood may be converted into a viable RTP material by treating with magnesium chloride. Specifically, immersing natural wood into an aqueous MgCl solution at room temperature produces so-called C-wood containing chloride anions that act to promote spin orbit coupling (SOC) and increase the RTP lifetime. Produced in this manner, C-wood exhibits an intense RTP emission with a lifetime of ~ 297 ms (vs. the ca. 17.5 ms seen for natural wood). As a demonstration of potential utility, an afterglow wood sculpture is prepared in situ by simply spraying the original sculpture with a MgCl solution. C-wood was also mixed with polypropylene (PP) to generate printable afterglow fibers suitable for the fabrication of luminescent plastics via 3D printing. We anticipate that the present study will facilitate the development of sustainable RTP materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162966PMC
http://dx.doi.org/10.1038/s41467-023-37762-9DOI Listing

Publication Analysis

Top Keywords

natural wood
16
room temperature
12
rtp materials
12
temperature phosphorescence
8
sustainable rtp
8
mgcl solution
8
rtp
7
natural
6
wood
5
phosphorescence natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!