A rapid, fast, widely applicable liquid-solid microextraction and purification method of triazine herbicides (TRZHs) in muti-media samples using salting-out assisted liquid-liquid extraction (SALLE) combined with self-assembled monolithic spin columns-solid phase micro extraction (MSC-SPME) was developed. Environmentally friendly coconut shell biochar (CSB) was used as the adsorbents of MSC-SPME. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was the separation and determination method. The adsorption kinetics and isotherms were investigated to indicate the interaction between CSB and TRZHs. Several parameters influencing the liquid-solid microextraction efficiency, such as sample pH, salting-out solution volume and pH, sample loading speed, elution speed, elution ratio and volume of eluent were systematically investigated with the aid of orthogonal design. The whole extraction process was operated within 10 min. Under the optimum extraction and determination conditions, good linearities for three TRZHs were obtained in a range of 0.10-200.00 ng mL, with linear coefficients (R) greater than 0.999. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 6.99-11.00 ng L and 23.33-36.68 ng L, respectively. The recoveries of the three TRZHs in multi-media environmental samples were ranged from 69.00% to 124.72%, with relative standard deviations (RSDs) lower than 0.43%. This SALLE-MSC-SPME-UPLC-MS/MS method was successfully applied to the determination of TRZHs in environmental and food samples and exhibited the advantages of high efficiency and sensitivity, low cost, and environmental friendliness. Compared with the methods published before, CSB-MSC was green, rapid, easy-operated, and reduced the whole cost of the experiment; SALLE combined MSC-SPME eliminated the matrix references effectively; what's more, the SALLE-MSC-SPME-UPLC-MS/MS method could be applied to various sample without complicated sample pretreatment procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341225 | DOI Listing |
Molecules
October 2024
Faculty of Advanced Technologies and Chemistry, Institute of Chemistry, Military University of Technology, Kaliskiego Str. 2, 00-908 Warsaw, Poland.
The preparation of samples for instrumental analysis is the most essential and time-consuming stage of the entire analytical process; it also has the greatest impact on the analysis results. Concentrating the sample, changing its matrix, and removing interferents are often necessary. Techniques for preparing samples for analysis are constantly being developed and modified to meet new challenges, facilitate work, and enable the determination of analytes in the most comprehensive concentration range possible.
View Article and Find Full Text PDFTalanta
January 2024
Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece. Electronic address:
Herein, a microextraction method was reported based on the liquid-solid phase transition of benzoic acid to quantify two statins, namely lovastatin and simvastatin in authentic human urine. The principle of the method is based on the phase transition of benzoic acid by altering the pH of the sample solution enabling efficient dispersion and phase separation in one step. Due to the moderate melting point of benzoic acid, its solidification is performed at ambient temperature without the need for sample cooling.
View Article and Find Full Text PDFJ Chromatogr Sci
November 2023
Food Science, Cornell University, Ithaca, NY 14852, USA.
The present monograph describes the salting-out assisted liquid-liquid microextraction (SALLME) and reverse-phase high-performance liquid chromatography with diode array detector (RP-HPLC-DAD) based quantification of two frequently applied neonicotinoid insecticides, i.e., acetamiprid (ACE) and imidacloprid (IMD), from selected tropical fruits (citrus and guava) and vegetables (tomato, okra and cauliflower).
View Article and Find Full Text PDFSe Pu
June 2023
Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
Sample pretreatment technology plays a vital role in the analysis of complex samples and is key to the entire analytical process. Its main purpose is to separate the substance to be measured from the sample matrix or interfering substances in the sample and to achieve a state in which the instrument can be analyzed and detected. Traditional sample pretreatment techniques include liquid-liquid extraction, liquid-solid extraction, precipitation separation, solvent volatilization-rotary evaporation, filtration, and centrifugation.
View Article and Find Full Text PDFAnal Chim Acta
June 2023
Department of Environmental Science, School of Tropical Medicine, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, Haikou, 571199, China. Electronic address:
A rapid, fast, widely applicable liquid-solid microextraction and purification method of triazine herbicides (TRZHs) in muti-media samples using salting-out assisted liquid-liquid extraction (SALLE) combined with self-assembled monolithic spin columns-solid phase micro extraction (MSC-SPME) was developed. Environmentally friendly coconut shell biochar (CSB) was used as the adsorbents of MSC-SPME. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was the separation and determination method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!