Objective: While the role of hedgehog (Hh) signaling in promoting zonal fibrocartilage production during development is well-established, whether this pathway can be leveraged to improve tendon-to-bone repair in adults is unknown. Our objective was to genetically and pharmacologically stimulate the Hh pathway in cells that give rise to zonal fibrocartilaginous attachments to promote tendon-to-bone integration.
Design: Hh signaling was stimulated genetically via constitutive Smo (SmoM2 construct) activation of bone marrow stromal cells or pharmacologically via systemic agonist delivery to mice following anterior cruciate ligament reconstruction (ACLR). To assess tunnel integration, we measured mineralized fibrocartilage (MFC) formation in these mice 28 days post-surgery and performed tunnel pullout testing.
Results: Hh pathway-related genes increased in cells forming the zonal attachments in wild-type mice. Both genetic and pharmacologic stimulation of the Hh pathway increased MFC formation and integration strength 28 days post-surgery. We next conducted studies to define the role of Hh in specific stages of the tunnel integration process. We found Hh agonist treatment increased the proliferation of the progenitor pool in the first week post-surgery. Additionally, genetic stimulation led to continued MFC production in the later stages of the integration process. These results indicate that Hh signaling plays an important biphasic role in cell proliferation and differentiation towards fibrochondrocytes following ACLR.
Conclusion: This study reveals a biphasic role for Hh signaling during the tendon-to-bone integration process after ACLR. In addition, the Hh pathway is a promising therapeutic target to improve tendon-to-bone repair outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524548 | PMC |
http://dx.doi.org/10.1016/j.joca.2023.04.013 | DOI Listing |
Arthroscopy
November 2024
Rochester, Minnesota.
Aging is associated with increased pathology in musculoskeletal tissues. Aging results in the accumulation of senescent cells, stem cell exhaustion, sterile inflammation, and immune cell dysfunction systemically and locally. Improving healing and regeneration during musculoskeletal aging is a significant area of clinical need.
View Article and Find Full Text PDFNanomicro Lett
November 2024
Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
J Am Acad Orthop Surg
December 2024
From the Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA (Dr. Dyment, Dr. Kamalitdinov, and Dr. Kuntz), and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA (Dr. Dyment and Dr. Kamalitdinov).
The work in this article summarizes findings from our group on key biochemical cues that govern the formation and repair of tendons and ligaments. Specifically, we summarize the journey that started with a serendipitous discovery that is now being translated into novel therapies to improve tendon-to-bone repair outcomes. This journey began with the discovery that the Hedgehog (Hh) signaling pathway was expressed within the enthesis during development and that its primary role was to promote fibrocartilage production and maturation.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
Rotator cuff injuries often necessitate surgical intervention, but the outcomes are often unsatisfactory. The underlying reasons can be attributed to multiple factors, with the intricate inflammatory activities and insufficient presence of stem cells being particularly significant. In this study, an innovative inflammation-responsive core-shell micro-hydrogel is designed for independent release of SDF-1 and IL-4 within a single delivery system to promote tendon-to-bone healing by recruiting MSCs and modulating M2 macrophages polarization.
View Article and Find Full Text PDFInjuries to musculoskeletal interfaces, such as the tendon-to-bone insertion of the rotator cuff, present significant physiological and clinical challenges for repair due to complex gradients of structure, composition, and cellularity. Advances in interface tissue engineering require stratified biomaterials able to both provide local instructive signals to support multiple tissue phenotypes while also reducing the risk of strain concentrations and failure at the transition between dissimilar materials. Here, we describe adaptation of a thiolated gelatin (Gel-SH) hydrogel via selective amination of carboxylic acid subunits on the gelatin backbone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!