A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid lipid-biopolymer nanocarrier as a strategy for GBM photodynamic therapy (PDT). | LitMetric

Hybrid lipid-biopolymer nanocarrier as a strategy for GBM photodynamic therapy (PDT).

Int J Biol Macromol

Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil. Electronic address:

Published: July 2023

Glioblastoma (GBM) is the most common brain cancer characterized by aggressive and infiltrated tumors. For this, hybrid biopolymer-lipid nanoparticles coated with biopolymers such as chitosan and lipidic nanocarriers (LN) loaded with a photosensitizer (AlClPc) can be used for GBM photodynamic therapy. The chitosan-coated LN exhibited stable physicochemical characteristics and presented as an excellent lipid nanocarrier with highly efficiently encapsulated photosensitizer chloro-aluminum phthalocyanine (AlClPc). LN(AlClPc)Ct0.1% in the presence of light produced more reactive oxygen species and reduced brain tumor cell viability and proliferation. Confirm the effects of in vivo LN applications with photodynamic therapy confirmed that the total brain tumor area decreased without systemic toxicity in mice. These results suggest a promising strategy for future clinical applications to improve brain cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124647DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
gbm photodynamic
8
brain cancer
8
brain tumor
8
hybrid lipid-biopolymer
4
lipid-biopolymer nanocarrier
4
nanocarrier strategy
4
strategy gbm
4
therapy pdt
4
pdt glioblastoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!