Molinate is classified as a thiocarbamate herbicide and is mainly used in paddy fields to culture rice. However, the toxic effects of molinate and the associated mechanisms in the process of development have not been completely elucidated. Therefore, in the present study, we demonstrated that molinate reduced the viability of zebrafish larvae and the probability of successful hatching using zebrafish (Danio rerio), one of the remarkable in vivo models for testing the toxicity of chemicals. In addition, molinate treatment triggered the occurrence of apoptosis, inflammation, and endoplasmic reticulum (ER) stress response in zebrafish larvae. Furthermore, we identified that an abnormal cardiovascular phenotype through wild type zebrafish, neuronal defects through transgenic olig2:dsRed zebrafish, and developmental toxicity in the liver through transgenic lfabp:dsRed zebrafish. Collectively, these results provide evidence of the hazardous effects of molinate on the developmental stage of non-target organisms by elucidating the toxic mechanisms of molinate in developing zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163768 | DOI Listing |
BMC Pregnancy Childbirth
January 2025
Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
Background: Preeclampsia, characterized by hypertension and proteinuria during pregnancy, poses significant risks to both mother and fetus. The complement system's aberrant activation, notably the C3AR1, is important to the pathogenesis of preeclampsia, although the precise mechanisms are not fully understood.
Materials And Methods: Utilizing the Comparative Toxicogenomics Database (CTD) and Molecular Signatures Database (MSigDB), we identified complement system targets associated with preeclampsia and environmental pollutants.
Ecotoxicol Environ Saf
January 2025
Liaoning Province Key Laboratory for phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shengyang, PR China. Electronic address:
Aim: Long-term exposure to excess sodium fluoride (NaF) can cause chronic fluorosis. Liver, the most important detoxification organ, is the most vulnerable to the effects of fluoride. Sodium butyrate (NaB), a short-chain fatty acid produced in the intestinal tract, maintains normal mitochondrial function in vivo and reduces liver inflammation and oxidative stress.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
Environ Monit Assess
January 2025
Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, India.
Nanoplastic (NP) pollution poses serious health hazards to aquatic ecosystems, impacting various physiological systems of aquatic organisms. This review examines the complex interplay between NPs and different physiological systems. In the digestive system, NPs downregulate the hsp70-like gene in Mytilus galloprovincialis, leading to decreased metabolic processes and impaired digestion.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania. Electronic address:
S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!