Textile effluent contains a highly toxic and refractory azo dyes. Eco-friendly method for efficient decolorization and degradation of textile effluent is essential. In the present study, treatment of textile effluent was carried through sequential electro oxidation (EO) and photo electro oxidation (PEO) using RuO-IrO coated titanium electrode as an anode and cathode followed by biodegradation. The pre-treatment of textile effluent by photo electro oxidation for 14 h exhibited 92% of decolorization. Subsequent biodegradation of the pre-treated textile effluent enhanced the reduction of chemical oxygen demand to 90%. Metagenomics results exhibited that Flavobacterium, Dietzia, Curtobacterium, Mesorhizobium, Sphingobium, Streptococcus, Enterococcus, Prevotellaand Stenotrophomonas bacterial communities majorly involved in the biodegradation of textile effluent. Hence, integrating sequential photo electro oxidation and biodegradation proposed an efficient and eco-friendly approach for treating textile effluent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138816 | DOI Listing |
J Environ Manage
December 2024
Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:
The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.
View Article and Find Full Text PDFHeliyon
December 2024
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.
This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.
View Article and Find Full Text PDFMolecules
November 2024
Dr. Ikram ul Haq Institute of Industrial Biotechnology, GC University, Lahore 54600, Pakistan.
The aim of the present research was the efficient degradation of industrial textile wastewater dyes using a very active cloned laccase enzyme. For this purpose, potent laccase-producing bacteria were isolated from soil samples collected from wastewater-replenished textile sites in Punjab, Pakistan. The laccase gene from locally isolated strain LI-81, identified as , was cloned into vector pET21a, which was further transformed into BL21 codon plus.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Facultad de Ciencias Exactas y Naturales, Área de Química, Universidad Nacional de Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
The efficiency of graphene oxide functionalized with L-asparagine (GO@L-Asn) as adsorbent for crystal violet (CV) dye removal from water and wastewater was investigated. The surface and textural properties of this new nanomaterial were characterized by pH at point of zero charge, Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmet-Teller technique. The main experimental variables involved in dye adsorption process were evaluated and optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!