Whole slide image features predict pathologic complete response and poor clinical outcomes in triple-negative breast cancer.

Pathol Res Pract

Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States. Electronic address:

Published: June 2023

AI Article Synopsis

  • Breast cancers consist of complex networks of malignant cells and their surrounding microenvironment, with a growing interest in using machine intelligence for better understanding these relationships and their impact on pathology.
  • Previous computational methods have focused on analyzing immune cells and tumor budding, but less attention has been given to the different types of tumor-associated stromal cells in relation to clinical outcomes.
  • In a study of 120 triple-negative breast cancer patients, high collagenous stroma was linked to lower rates of pathologic complete response, while a higher combined presence of diverse stromal types predicted worse clinical survival; utilizing machine intelligence alongside traditional parameters showed promise in predicting patient outcomes.

Article Abstract

Introduction: Breast cancers are complex ecosystem like networks of malignant cells and their associated microenvironment. Applications for machine intelligence and the tumoral microenvironment are expanding frontiers in pathology. Previously, computational approaches have been developed to quantify and spatially analyze immune cells, proportionate stroma, and detect tumor budding. Little work has been done to analyze different types of tumor-associated stromata both quantitatively and computationally in relation to clinical endpoints.

Methods: We aimed to quantify stromal features from whole slide images (WSI) including stromata (myxoid, collagenous, immune) and tumoral components and combined them with traditional clinical and pathologic parameters in 120 triple-negative breast cancer (TNBC) patients treated with neoadjuvant chemotherapy (NAC) to predict pathologic complete response (pCR) and poor clinical outcomes.

Results: High collagenous stroma on WSI was best associated with lower rates of pCR, while combined high proportionated stroma (myxoid, collagenous, and immune) most optimally predicted worse clinical survival outcomes. When combining clinical, pathologic, and WSI features, Receiver Operator Characteristics (ROC) curves for LASSO features was up to 0.67 for pCR and 0.77 for poor outcomes.

Conclusion: The techniques demonstrated in the present study can be performed with appropriate quality assurance. Future trials are needed to demonstrate whether coupling applications for machine intelligence, inclusive of the tumor mesenchyme, can improve outcomes prediction for patients with breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2023.154476DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
predict pathologic
8
pathologic complete
8
complete response
8
poor clinical
8
triple-negative breast
8
applications machine
8
machine intelligence
8
myxoid collagenous
8
collagenous immune
8

Similar Publications

Background: Virtual follow-up (VFU) has the potential to enhance cancer survivorship care. However, a greater understanding is needed of how VFU can be optimized.

Objective: This study aims to examine how, for whom, and in what contexts VFU works for cancer survivorship care.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a pervasive neurobehavioral condition characterized by disruption of behavioral and emotional patterns in individuals with this condition. Given that various environmental and genetic factors play a fundamental role in the pathophysiology of ASD, it can be said that ASD is a multifaceted disease. This study used scientific databases including Google Scholar, PubMed, Scopus, and Semantic Scholar.

View Article and Find Full Text PDF

Monocyte-cancer cell fusion is mediated by phosphatidylserine-CD36 receptor interaction and induced by ionizing radiation.

PLoS One

January 2025

Division of Cell- and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Emerging evidence suggests that fusion of cancer cells with leucocytes, such as macrophages, plays a significant role in cancer metastasis and results in tumor hybrid cells that acquire resistance to chemo- and radiation therapy. However, the precise mechanisms behind the leukocyte-cancer cell fusion remain unclear. The present in vitro study explores the presence of fusion between the monocyte cell line (THP-1) and the breast cancer cell line (MCF-7) in relation to the expression of CD36 and phosphatidylserine with and without treatment of these cells with ionizing radiation.

View Article and Find Full Text PDF

The detection of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human epidermal growth factor receptor 2 (HER-2) is important for the stratification of breast cancer and the selection of therapeutic modalities. This study aimed to determine the quantitative expression of ER, PR and HER-2 using Immunohistochemistry and their correlation with quantitative baseline Ct values measured using Quantitative Polymerase Chain Reaction (PCR). This study also assessed the use of fresh breast tissue biopsies preserved in RNAlater solution in the quantitative detection of these receptors using PCR technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!