Background: Nonylphenol (NP) is a common environmental endocrine disruptor that is associated with the development of cardiovascular disease. However, the toxic effect of NP on mitochondria in the heart of offspring to exposed individuals remains exclusive.

Objective: To investigate whether perinatal NP exposure causes mitochondrial damage in the hearts of offspring of exposed individuals and determine its mechanism of action through both animal and cell experiments.

Methods And Results: For the in vivo experiment, pregnant rats were randomly divided into four groups: the control group (corn oil, C), low dose group (2.5 mg/kg/day, L-NP group), medium dose group (50 mg/kg/day, M-NP group), and high dose group (100 mg/kg/day, H-NP group), with 12 rats in each group. The NP concentration in the hearts of offspring at PND21 and PND90 increased with the increase of the NP dose. Perinatal NP exposure induced a gradual increase in systolic blood pressure in offspring at PND90. In the H-NP group, there was a high degree of inflammatory cell infiltration, myofibril breaks, inconspicuous or absent nuclei, and pink collagen deposition. At PND90, the membrane integrity of mitochondria in the H-NP group was disrupted, the cristae disorder was aggravated, and there was internal lysis with vacuolation. Compared to the control group, the mitochondrial membrane potential of offspring at PND21 and PND90 was decreased in each of the NP exposure groups. NP exposure decreased the activity of mitochondrial respiratory enzyme complex I (CI) and increased the activity of mitochondrial respiratory enzyme complex IV (CIV) in the offspring. At PND21 and PND90, the mRNA and protein expression levels of cardiac mitochondrial PGC-1α, NRF-1, and TFAM decreased with increasing NP dose in a dose-dependent manner. In the in vitro experiment, H9C2 cells were divided into the following four groups: the blank group, RSV group (15 μg/ml), RSV + NP group (15 μg/ml RSV + 120 mmol/L NP), and NP group (120 mmol/L). With increasing NP concentration, the cell survival rate gradually decreased. Compared to the control, the membrane potential was significantly decreased in the NP group; the protein expression levels of SIRT1, PGC-1α, NRF-1, and TFAM in the NP group were significantly lower.

Conclusion: Perinatal NP exposure caused mitochondrial damage and dysfunction in the offspring of exposed individuals in a dose-dependent manner. This toxic effect may be related to NP-induced mitochondrial pathology in the offspring and the inhibition of both gene and protein expression involved in the PGC-1α/NRF-1/TFAM mitochondrial biogenesis signaling pathway following NP exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.114977DOI Listing

Publication Analysis

Top Keywords

group
17
offspring exposed
12
exposed individuals
12
perinatal exposure
12
dose group
12
h-np group
12
offspring pnd21
12
pnd21 pnd90
12
protein expression
12
offspring
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!