A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A computational predictor of the anaerobic mechanical power outputs from a clinical exercise stress test. | LitMetric

We previously were able to predict the anaerobic mechanical power outputs using features taken from a maximal incremental cardiopulmonary exercise stress test (CPET). Since a standard aerobic exercise stress test (with electrocardiogram and blood pressure measurements) has no gas exchange measurement and is more popular than CPET, our goal, in the current paper, was to investigate whether features taken from a clinical exercise stress test (GXT), either submaximal or maximal, can predict the anaerobic mechanical power outputs to the same level as we found with CPET variables. We have used data taken from young healthy subjects undergoing CPET aerobic test and the Wingate anaerobic test, and developed a computational predictive algorithm, based on greedy heuristic multiple linear regression, which enabled the prediction of the anaerobic mechanical power outputs from a corresponding GXT measures (exercise test time, treadmill speed and slope). We found that for submaximal GXT of 85% age predicted HRmax, a combination of 3 and 4 variables produced a correlation of r = 0.93 and r = 0.92 with % error equal to 15 ± 3 and 16 ± 3 on the validation set between real and predicted values of the peak and mean anaerobic mechanical power outputs (p < 0.001), respectively. For maximal GXT (100% of age predicted HRmax), a combination of 4 and 2 variables produced a correlation of r = 0.92 and r = 0.94 with % error equal to 12 ± 2 and 14 ± 3 on the validation set between real and predicted values of the peak and mean anaerobic mechanical power outputs (p < 0.001), respectively. The newly developed model allows to accurately predict the anaerobic mechanical power outputs from a standard, submaximal and maximal GXT. Nevertheless, in the current study the subjects were healthy, normal individuals and therefore the assessment of additional subjects is desirable for the development of a test applicable to other populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162510PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283630PLOS

Publication Analysis

Top Keywords

anaerobic mechanical
28
mechanical power
28
power outputs
28
exercise stress
16
stress test
16
predict anaerobic
12
anaerobic
8
clinical exercise
8
test
8
submaximal maximal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!