Plant serine/arginine-rich proteins: versatile players in RNA processing.

Planta

Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.

Published: May 2023

AI Article Synopsis

  • SR proteins are crucial splicing factors that interact with precursor mRNAs to aid in RNA processing, contributing to plant growth and stress response.
  • Alternative splicing, facilitated by SR proteins, enhances gene and protein diversity by allowing different mRNA forms to be created from the same gene.
  • Despite being recognized in plants for over thirty years, there's still limited knowledge about their evolution, functions, and regulatory networks compared to SR proteins in animals.

Article Abstract

Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-023-04132-0DOI Listing

Publication Analysis

Top Keywords

splicing factors
12
alternative splicing
12
serine/arginine-rich proteins
8
rna processing
8
precursor mrnas
8
splicing
8
growth stress
8
stress responses
8
proteins
5
plant serine/arginine-rich
4

Similar Publications

The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.

View Article and Find Full Text PDF

Objective: To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens.

Methods: RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression.

Mol Cell

January 2025

Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!