Paclitaxel (PTX) is an anti-microtubule agent, used for the treatment of various types of cancers; however, it produces painful neuropathy which limits its use. Many neuroprotective agents have been introduced to mitigate PTX-induced neuropathic pain (PINP), but they pose many adverse effects. The purpose of this study was to evaluate the pharmacological characteristics of soy isoflavone, and daidzein (DZ) in attenuating PINP. At the beginning of the investigation, the effect of DZ was confirmed through behavioral analysis, as it reduced pain hypersensitivity. Moreover, changes in the histological parameters were reversed by DZ administration along with vascular permeability. PTX administration upregulated transient receptor potential vanilloid 1 (TRPV1) channels and purinergic receptors (P2Y), contributing to hyperalgesia; but administration of DZ downregulated the TRPV1 and P2Y, thus reducing hyperalgesia. DZ increased nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), playing a pivotal role in the activation of the antioxidant pathway. DZ also decreased neuronal apoptosis by decreasing caspase-3 and Bcl2-associated X-protein (Bax), while simultaneously, increasing Bcl-2. PTX administration produced severe DNA damage, which was mitigated by DZ. Similarly, DZ administration resulted in inhibition of neuroinflammation by increasing antioxidant enzymes and reducing oxidative stress markers. PTX caused increased in production of pro-inflammatory mediators such as the cytokines production, while DZ inhibited the pro-inflammatory mediators. Additionally, in silico pharmacokinetic and toxicodynamic study of DZ was also conducted. In summary, DZ demonstrated significant neuroprotective activity against PTX induced neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10787-023-01225-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!