Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An in-house designed transmission X-ray microscopy (TXM) instrument has been developed and commissioned at beamline BL18B of the Shanghai Synchrotron Radiation Facility (SSRF). BL18B is a hard (5-14 keV) X-ray bending-magnet beamline recently built with sub-20 nm spatial resolution in TXM. There are two kinds of resolution mode: one based on using a high-resolution-based scintillator-lens-coupled camera, and the other on using a medium-resolution-based X-ray sCMOS camera. Here, a demonstration of full-field hard X-ray nano-tomography for high-Z material samples (e.g. Au particles, battery particles) and low-Z material samples (e.g. SiO powders) is presented for both resolution modes. Sub-50 nm to 100 nm resolution in three dimensions (3D) has been achieved. These results represent the ability of 3D non-destructive characterization with nano-scale spatial resolution for scientific applications in many research fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325026 | PMC |
http://dx.doi.org/10.1107/S1600577523003168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!