A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High Persistence of Novel Polyfluoroalkyl Betaines in Aerobic Soils. | LitMetric

Some contemporary aqueous film-forming foams (AFFFs) contain :3 and :1:2 fluorotelomer betaines (FTBs), which are often detected at sites impacted by AFFFs. As new chemical replacements, little is known about their environmental fate. For the first time, we investigated the biotransformation potential of 5:3 and 5:1:2 FTBs and a commercial AFFF that mainly contains :3 and :1:2 FTBs ( = 5, 7, 9, 11, and 13). Although some polyfluoroalkyl compounds are precursors to perfluoroalkyl acids, 5:3 and 5:1:2 FTBs exhibited high persistence, with no significant changes even after 120 days of incubation. While the degradation of 5:3 FTB into suspected products such as fluorotelomer acids or perfluoroalkyl carboxylic acids (PFCAs) could not be conclusively confirmed, we did identify a potential biotransformation product, 5:3 fluorotelomer methylamine. Similarly, 5:1:2 FTB did not break down or produce short-chain hydrogen-substituted polyfluoroalkyl acids (:2 H-FTCA), hydrogen-substituted PFCA (2H-PFCA), or any other products. Incubating the AFFF in four soils with differing properties and microbial communities resulted in 0.023-0.25 mol % PFCAs by day 120. Most of the products are believed to be derived from :2 fluorotelomers, minor components of the AFFF. Therefore, the findings of the study cannot be fully explained by the current understanding of structure-biodegradability relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c07395DOI Listing

Publication Analysis

Top Keywords

high persistence
8
512 ftbs
8
persistence novel
4
novel polyfluoroalkyl
4
polyfluoroalkyl betaines
4
betaines aerobic
4
aerobic soils
4
soils contemporary
4
contemporary aqueous
4
aqueous film-forming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!