Purpose: To assess relationships between ocular biometric parameters in dependence of age and sex in children and adolescents.

Methods: In the Ural Children Eye Study, a school-based cohort study, 4933 children underwent an ophthalmological and general examination.

Results: Complete biometric measurements were available for 4406 (89.3%) children. Cycloplegic refractive error (mean: -0.87 ± 1.73 diopters (D); median: -0.38 D; range: -19.75 D to +11.25 D) increased (multivariable analysis; r  = 0.73) with shorter axial length (β: -0.99; non-standardized regression coefficient B: -1.64; 95% CI: -1.68, -1.59) and lower corneal refractive power (β: -0.55; B: -0.67; 95% CI: -0.70, -0.64), in addition to higher cylindrical refractive error (β: 0.10; B: 0.34; 95% CI: 0.27, 0.41), thinner lens (β: -0.11; -0.85; 95% CI: -1.02, -0.69) and male sex (β: 0.15; B: 0.50; 95% CI: 0.42, 0.57). In univariate analysis, decrease in refractive error with older age was more significant (β: -0.38 vs. β: -0.25) and steeper (B: -0.22 (95% CI: -0.24, -0.20) vs. B: -0.13 (95% CI: -0.15, -0.11)) in girls than boys, particularly for an age of 11+ years. Axial length increased with older age (steeper for age <11  years) (B: 0.22 (95% CI: 0.18, 0.25) vs. 0.07 (95% CI: 0.05, 0.09)). In multivariable analysis, axial length increased with lower refractive error (β: -0.77; B: -0.42; 95% CI: -0.43, -0.40) and lower corneal refractive power (β: -0.54; B: -0.39; 95% CI: -0.41, -0.38), in addition to older age (β: 0.04; B: 0.02; 95% CI: 0.01, 0.03), male sex (β: 0.13; B: 0.23; 95% CI: 0.21, 0.32), higher cylindrical refractive error (β: 0.05; B: 0.09; 95% CI: 0.05, 0.14) and thinner lens (β: -0.14; B: -0.62; 95% CI: -0.72, -0.51). The axial length/corneal curvature (AL/CR) ratio increased until the age of 14 years (β: 0.34; B: 0.017; 95% CI: 0.016, 0.019; p < 0001), and then became independent of age. The AL/CR ratio increased (r  = 0.78) mostly with higher corneal refractive power (β: 0.25; B: 0.02; 95% CI: 0.02, 0.02; p < 0.001), lower refractive error (β: -0.75; B: -0.05; 95% CI: -0.05, -0.05; p < 0.001), thinner lens thickness (β: -01.6; B: -0.09; 95% CI: -0.10, -0.08; p < 0.001) and older age (β: 0.16; B: 0.006; 95% CI: 0.005, 0.007; p < 0.001).

Conclusions: In this multiethnic group of school children in Russia, the age-related increase in myopic refractive error was more significant and steeper in girls, particularly for the age group of 11+ years. Determinants of higher myopic refractive error were longer axial length, higher corneal refractive power, lower cylindrical refractive error, thicker lens and female sex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.15692DOI Listing

Publication Analysis

Top Keywords

axial length
12
refractive error
12
corneal refractive
8
refractive power
8
ural children
8
children eye
8
eye study
8
older age
8
95%
7
children
6

Similar Publications

Purepose: The intraoperative femtosecond laser time, Cumulative Dissipated Energy (CDE), Effective Phacoemulsification time (EPT), and intraoperative fluid perfusion volume were compared under different model fragmentation modes using Catalys femtosecond laser system.

Methods: This was a single-center, prospective, randomized controlled study. A total of 120 eyes who underwent femtosecond laser-assisted cataract phacoemulsification combined with intraocular lens implantation in Xiamen Eye Center affiliated to Xiamen University from September 2022 to March 2023 were randomly divided into 4 groups to undergo pre-nucleus splitting in different ways: Group 1: six-split, Group 2: eight-split, Group 3: six-split + gridded softening, and Group 4: eight-split + gridded softening.

View Article and Find Full Text PDF

Relative anterior microphthalmos (RAM) is a rare ocular condition characterized by disproportionately small anterior segments but normal axial length (corneal diameter < 11 mm and axial length > 20 mm). This study aimed to determine the prevalence of RAM and its association with glaucoma utilizing IOL Master 700 data (Carl Zeiss Meditec, Jena, Germany). A retrospective analysis was conducted of the biometric parameters of 6,407 eyes, and 115 cases of RAM were identified.

View Article and Find Full Text PDF

To observe the structural changes of retina and choroid in patients with different degrees of myopia. We recruited 219 subjects with different degrees of myopia for best corrected visual acuity, computer refraction, intraocular pressure, axial length (AL), optical coherence tomography (OCT) imaging, and other examinations. Central macular retinal thickness (CRT), subfoveal choroidal thickness (SFCT), nasal retinal thickness (NRT), temporal retinal thickness (TRT), nasal choroidal thickness (NCT) and temporal choroidal thickness (TCT) were measured by optical coherence tomography.

View Article and Find Full Text PDF

We developed a simple quantifiable scoring system that predicts aneurysmal subarachnoid hemorrhage (aSAH) mortality, delayed cerebral ischemia (DCI), and modified Rankin scale (mRS) outcomes using readily available SAH admission data with SAH volume (SAHV) measured on computed tomography (CT). We retrospectively analyzed a cohort of 277 patients with aSAH admitted at our Comprehensive Stroke Center at Mayo Clinic in Jacksonville, Florida, between January 5, 2012, and February 24, 2022. We developed a mathematical radiographic model SAHV that measures basal cisternal SAH blood volume using a derivation of the ABC/2 ellipsoid formula (A = width/thickness, B = length, C = vertical extension) on noncontrast CT, which we previously demonstrated is comparable to pixel-based manual segmentation on noncontrast CT.

View Article and Find Full Text PDF

Purpose: This study aims to assess the effectiveness of atropine 0.05% for myopia control among children exhibiting (documented) rapid myopia progression (>0.75D/year).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!