Additive fabrication (AF) or layer-by-layer synthesis technologies is one of the most dynamically developing areas of digital production. Modern additive technologies can be used to fabricate zirconia-based restorations. The second part of this article will present the fabrication of zirconia restorations using additive technologies such as selective laser sintering (SLS), selective laser melting (SLM), binder jetting (BJ), robocasting (fusion deposition modeling, FDM), as well as the advantages and disadvantages of the mentioned technologies. The analysis of the presented works indicates the need for further research aimed at optimizing 3D printing of zirconia restorations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/stomat202310202177 | DOI Listing |
Hua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Center of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
Objectives: This study aims to explore the effect of improving clinical efficiency by replacing traditional impression workflow with centralized digital impression workflow.
Methods: The department of prosthodontics in Center of Stomatology, Peking University Shenzhen Hospital has improved the clinical workflow by replacing the traditional impression made by doctors using impression materials for each patient with a centralized digital impression made by one technician for all patients in the department. This cross-sectional study recorded the chairside time required for impression taking in patients undergoing single posterior zirconia full crown restoration before clinical process improvement; the time required for centralized digital impression production; the comfort level of patients; and the adjacency relationship, occlusal contact relationship, and time required for prostheses adjusting (i.
J Prosthodont
January 2025
Department of Prosthodontics, Yeditepe University Faculty of Dentistry, Istanbul, Turkey.
Purpose: To compare the effect of post-and-core material type and production technique on the fracture resistance of teeth.
Materials And Methods: Sixty human maxillary central incisors were used for the study. Root canal treatments were performed, and the post cavities were created.
J Prosthet Dent
January 2025
Associate Professor and Director of Student Research, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, OH. Electronic address:
Statement Of Problem: Currently there is no regulatory requirement or international standard for the wear resistance of dental materials and therefore no need to test prior to market launch.
Purpose: The purpose of this in vitro study was to evaluate and compare the total volumetric wear characteristics of milled polymer infiltrated ceramic network (MPICN) and printed polymer resin (PPR) as substrates opposing five antagonists, human enamel (EN), lithium disilicate (LD), zirconia (ZR), MPICN, and PPR, and to evaluate and compare the volumetric wear of these same materials as antagonists.
Material And Methods: Ten of each antagonist for a total of 50 EN, LD (IPS e.
J Mech Behav Biomed Mater
January 2025
Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, 06269, USA. Electronic address:
This study aims to investigate the effects of material compatibility, variable cooling rates, and crown geometry on thermal stress development in porcelain-veneered lithium disilicate (PVLD) and porcelain-veneered zirconia (PVZ) dental crown systems, and subsequently anticipate parameters for their optimum performance. An anatomically correct 3D crown model was developed from STL files generated using 3D scans of the experimental crown sample. Next, the viscoelastic finite element model (VFEM) based on the 3D crown model was developed and validated for anatomically correct bilayer PVLD and PVZ crown systems.
View Article and Find Full Text PDFDent Mater J
January 2025
Department of Conservative Dentistry, St. Vincent Hospital, College of Medicine, The Catholic University of Korea.
The primary aim of this study was to determine whether there is a difference in degree of conversion (DC) between resin cements polymerized with an adhesive and those without an adhesive. The secondary aim was to compare interfacial gap of zirconia restoration when resin cements are self-cured. The DC of resin cement was measured without adhesive treatment continuously for 15 min and at 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!