On-surface synthesis is a modern technique for the preparation of atomically low-dimensional molecular nanostructures. However, most nanomaterials grow horizontally on the surface, and the step-by-step longitudinally controllable covalent bonding reaction on the surface is rarely reported. Here, we successfully achieved bottom-up on-surface synthesis by using coiled-coil homotetrameric peptide bundles called 'bundlemers' as building blocks. Rigid nano-cylindrical bundlemer with two click-reactive functionalities at each end can be grafted vertically onto the surface or another bundlemer with complementary clickable groups by click reaction at one end, thus enabling the longitudinal bottom-up synthesis of rigid rods with an exact number of bundlemers (up to 6) on the surface. Moreover, we can graft linear poly(ethylene glycol) (PEG) to one terminal of rigid rods to obtain rod-PEG hybrid nanostructures that can be released from the surface under specific conditions. Interestingly, rod-PEG nanostructures consisting of different numbers of bundles can self-assemble in water into different nano-hyperstructures. In general, the bottom-up on-surface synthesis strategy presented here can provide a simple and accurate method to manufacture a variety of nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr01070h | DOI Listing |
Acc Chem Res
January 2025
Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Radiobiology Lab, Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH, Guildford, UK.
Nano Lett
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.
Creating densely functionalized supported materials without aggregation has been one of the ultimate goals for heterogeneous catalysts. Direct conversion of readily available bulk materials into highly dispersed supported materials could be highly beneficial for real applications. In this work, we invented an on-surface synthetic strategy for generating highly loaded and well-dispersed nickel nanoparticles on nickel oxide supports (Ni/NiO).
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Metal-alkynyls, an emerging class of functional metal-organic materials, have attracted widespread attention due to their fascinating properties and multifaceted potential applications, such as luminescence, nonlinear optics, liquid crystals, and catalysis. Despite considerable effort toward their synthesis, precise construction of complex metal-alkynyl structures with a high selectivity remains a great challenge. The rise of on-surface chemistry not only offers a route to realizing controlled synthesis of low-dimensional (LD) metal-alkynyls but also provides an opportunity for their in-depth investigations with advanced surface characterization techniques such as scanning tunneling microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!