The important but remained issue to be addressed to achieve the mass production of perovskite solar modules include a large-area fabrication of high-quality perovskite film with eco-friendly, viable production methods. Although several efforts are made to achieve large-area fabrication of perovskite, the development of eco-friendly solvent system, which is precisely designed to be fit to scale-up methods are still challenging. Herein, this work develops the eco-friendly solvent/co-solvent system to produce a high-quality perovskite layer with a bathing in eco-friendly antisolvent. The new co-solvent/additive, methylsulfonylmethane (MSM), efficiently improves the overall solubility and has a suitable binding strength to the perovskite precursor, resulting in a high-quality perovskite film with antisolvent bathing method in large area. The resultant perovskite solar cells showed high power conversion efficiency of over 24% (in reverse scan), with a good long-term stability under continuous light illumination or damp-heat condition. MSM is also beneficial to produce a perovskite layer at low-temperature or high-humidity. MSM-based solvent system is finally applied to large-area, resulting in highly efficiency perovskite solar modules with PCE of 19.9% (by aperture) or 21.2% (by active area) in reverse scan. These findings contribute to step forward to a mass production of perovskite solar modules with eco-friendly way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369249 | PMC |
http://dx.doi.org/10.1002/advs.202300728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!