In this work, we perform a comprehensive analytical study to find the novel exact traveling wave solutions of the -dimensional Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The recently developed -expansion technique is a capable method for finding the new exact solutions of assorted nonlinear evolution equations. Some new analytical solutions are obtained by utilizing the aforementioned method. The obtained solutions are expressed as trigonometric functions and exponential functions. The extracted exact wave solutions are advanced and fully unique from the earlier literature Moreover, we have presented the contour simulations, 2D and 3D graphical representations of the solution functions and we have observed that the solutions obtained are periodic and solitary wave solutions. We have shown two soliton wave solutions and two singular periodic wave solutions for the particular values of the parameters graphically. As per our knowledge, we must say that the extracted solutions might be significant and essential for new physical phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151371PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15690DOI Listing

Publication Analysis

Top Keywords

wave solutions
20
solutions
11
method finding
8
analytical solutions
8
kp-bbm equation
8
wave
5
implementation novel
4
analytical
4
novel analytical
4
analytical method
4

Similar Publications

Magnetic field probe-based co-simulation method for irregular volume-type inductively coupled wireless MRI radiofrequency coils.

Magn Reson Imaging

January 2025

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.

Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.

View Article and Find Full Text PDF

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.

View Article and Find Full Text PDF

The misuse and uncontrolled release of pharmaceuticals into water bodies lead to environmental challenges and the development of resistance, thereby reducing their effectiveness. To mitigate these problems, it is essential to identify pharmaceuticals in water sources and eliminate them prior to human use. This study presents the designing of a novel nanosensor for the detection of the antibiotic Cefoperazone Sodium Sulbactam Sodium (CSSS).

View Article and Find Full Text PDF

Schizophyllan (SPG) is a semi-flexible, triple-helical polysaccharide with attractive properties as an efficient viscosifying compound and biological response modifier. We report microrheological characterization of schizophyllan as dispersed in solution and the changes associated when crosslinked with chitosan over an extended frequency range using diffusing wave spectroscopy (DWS). A SPG with high molecular weight (M = 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!