Photoperiod regulates the functions and development of gonadal organs of seasonally breeding animals, resulting in breeding peaks in specific seasons. miRNA plays an important role in the regulation of testicular physiological functions. However, the relationship between photoperiods and miRNA levels in testes has yet to be conclusively determined. We investigated testicular miRNA of striped dwarf hamster () responses to different photoperiods (long daylength [LD], moderate daylength [MD], and short daylength [SD]) and the potential pathways involved in photoperiod regulated reproduction. Testicular weights and reproductive hormone levels were measured in each of photoperiod treatments after 30 days. The concentrations of testosterone (T) and dihydrogen testosterone (DHT) in testes and Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum were higher in MD than in the other two groups. Testicular weights were heaviest in MD. Small RNA-seq was performed for the testes of hamsters in three groups. A total of 769 miRNAs were identified, of which 83 were differentially expressed between LD, MD, and SD. GO and KEGG analysis of target genes revealed that some miRNAs influence testicular activities by regulating the pathways related to cell apoptosis and metabolism. Gene expression pattern analysis showed that the MAPK signaling pathway may be the core pathway for photoperiodic regulation of reproduction. These results suggest that moderate daylength is more suitable for hamster reproduction while long daylength and short daylength may regulate reproduction through different molecular pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151367PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15687DOI Listing

Publication Analysis

Top Keywords

small rna-seq
8
potential pathways
8
photoperiod regulated
8
regulated reproduction
8
long daylength
8
moderate daylength
8
short daylength
8
testicular weights
8
daylength
6
reproduction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!