Backgrounds: This study performed multi-modal hemodynamic analysis including quantitative color-coded digital subtraction angiography (QDSA) and computational fluid dynamics (CFD) to delineate peri-therapeutic hemodynamic changes and explore the risk factors for in-stent restenosis (ISR) and symptomatic ISR (sISR).

Methods: Forty patients were retrospectively reviewed. Time to peak (TTP), full width at half maximum (FWHM), cerebral circulation time (CCT), angiographic mean transit time (aMTT), arterial stenosis index (ASI), wash-in gradient (WI), wash-out gradient (WO) and stasis index were calculated with QDSA and translesional pressure ratio (PR) and wall shear stress ratio (WSSR) were quantified from CFD analysis. These hemodynamic parameters were compared between before and after stent deployment and multivariate logistic regression model was established to detect predictors for ISR and sISR at follow-up.

Results: It was found that stenting generally reduced TTP, stasis index, CCT, aMTT and translesional WSSR while significantly increased translesional PR. ASI decreased after stenting, and during the mean follow-up time of 6.48 ± 2.86 months, lower ASI (<0.636) as well as larger stasis index were corroborated to be independently associated with sISR. aMTT showed a linear correlation with CCT before and after stenting.

Conclusion: PTAS not only improved cerebral circulation and blood flow perfusion but also changed local hemodynamics significantly. ASI and stasis index derived from QDSA were proved to play a prominent role in risk stratification for sISR. Multi-modal hemodynamic analysis could facilitate intraoperative real-time hemodynamic monitoring and help the determination of the end point of intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151536PMC
http://dx.doi.org/10.3389/fneur.2023.1136847DOI Listing

Publication Analysis

Top Keywords

multi-modal hemodynamic
8
in-stent restenosis
8
peri-therapeutic multi-modal
4
hemodynamic
4
hemodynamic assessment
4
assessment detection
4
detection predictors
4
predictors symptomatic
4
symptomatic in-stent
4
restenosis percutaneous
4

Similar Publications

Background And Objective: Cerebral aneurysms occur as balloon-like outpouchings in an artery, which commonly develop at the weak curved regions and bifurcations. When aneurysms are detected, understanding the risk of rupture is of immense clinical value for better patient management. Towards this, Fluid-Structure Interaction (FSI) studies can improve our understanding of the mechanics behind aneurysm initiation, progression, and rupture.

View Article and Find Full Text PDF

Prenatal repair of myelomeningocele (MMC) is associated with lower rates of hydrocephalus requiring ventriculoperitoneal shunt and improved motor function when compared with postnatal repair. Efforts aiming to develop less invasive surgical techniques to decrease the risk for the pregnant patient while achieving similar benefits for the fetus have led to the implementation of fetoscopic surgical techniques. While no ideal anesthetic technique for fetoscopic MMC repair has been demonstrated, we present our anesthetic approach for these repairs, including considerations for both the pregnant patient and the fetus.

View Article and Find Full Text PDF
Article Synopsis
  • * The research highlights how imbalances in cardiac preload and afterload affect blood pressure regulation in chronic pain patients, leading to increased cardiac strain and reduced venous blood return.
  • * Findings suggest that this strain can increase susceptibility to tissue hypoperfusion and chronic inflammation, with potential applications for monitoring and diagnosing at-risk individuals through wearable technology.
View Article and Find Full Text PDF

Multi-modal characterisation of early-stage, subclinical cardiac deterioration in patients with type 2 diabetes.

Cardiovasc Diabetol

October 2024

Computational Cardiovascular Science Group, Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK.

Background: Type 2 diabetes mellitus (T2DM) is a major risk factor for heart failure with preserved ejection fraction and cardiac arrhythmias. Precursors of these complications, such as diabetic cardiomyopathy, remain incompletely understood and underdiagnosed. Detection of early signs of cardiac deterioration in T2DM patients is critical for prevention.

View Article and Find Full Text PDF

We assessed the feasibility of concurrent monitoring of cerebral hemodynamics in adult, comatose out-of-hospital cardiac arrest (OHCA) patients admitted to the National University Heart Centre Singapore from October 2021 to August 2023. Patients underwent continuous near-infrared spectroscopy (NIRS) monitoring in the first 72 h after return of spontaneous circulation (ROSC) and 30-min transcranial Doppler ultrasound (TCD) monitoring at least once. With constant mechanical ventilatory settings and continuous electrocardiographic, pulse oximeter and end-tidal carbon dioxide monitoring, blood pressure was manipulated via vasopressors and cerebral autoregulation assessed by measuring changes in regional cerebral oxygenation (NIRS) and cerebral blood flow velocities (TCD) in response to changes in mean arterial pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!