Optimization of Cell Viability Assays for Drug Sensitivity Screens.

Methods Mol Biol

Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Published: May 2023

AI Article Synopsis

  • During the drug discovery process, cell viability assays are crucial for assessing cell health and response to drugs in laboratory settings.
  • Optimizing these assays ensures consistent and reliable results, utilizing metrics like IC50 and AUC to identify potential drug candidates for further testing.
  • The text details a protocol using the resazurin reduction assay on MCF7 breast cancer cells, highlighting its efficiency and ease of use for drug sensitivity screening.

Article Abstract

During the preclinical stages of the drug discovery process, cell viability assays are fundamental tools for studying the phenotypic properties and overall health of cells following in vitro drug sensitivity screens. Therefore, it is important to optimize your viability assay of choice to obtain reproducible and replicable results, as well as use relevant drug response metrics (e.g., IC50, AUC, GR50, and GRmax) to identify candidate drugs for further evaluation in vivo. Herein, we used the resazurin reduction assay which is a quick, cost-effective, simple-to-use, and sensitive method for examining the phenotypic properties of cells. Using the MCF7 breast cancer cell line, we provide a detailed step-by-step protocol for optimizing drug sensitivity screens using the resazurin assay.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3052-5_18DOI Listing

Publication Analysis

Top Keywords

drug sensitivity
12
sensitivity screens
12
cell viability
8
viability assays
8
phenotypic properties
8
drug
5
optimization cell
4
assays drug
4
screens preclinical
4
preclinical stages
4

Similar Publications

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways.

View Article and Find Full Text PDF

Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!