Telomere shortening is a hallmark of aging and is counteracted by telomerase. As in humans, the zebrafish gut is one of the organs with the fastest rate of telomere decline, triggering early tissue dysfunction during normal zebrafish aging and in prematurely aged telomerase mutants. However, whether telomere-dependent aging of an individual organ, the gut, causes systemic aging is unknown. Here we show that tissue-specific telomerase expression in the gut can prevent telomere shortening and rescues premature aging of tert. Induction of telomerase rescues gut senescence and low cell proliferation, while restoring tissue integrity, inflammation and age-dependent microbiota dysbiosis. Averting gut aging causes systemic beneficial impacts, rescuing aging of distant organs such as reproductive and hematopoietic systems. Conclusively, we show that gut-specific telomerase expression extends the lifespan of tert by 40%, while ameliorating natural aging. Our work demonstrates that gut-specific rescue of telomerase expression leading to telomere elongation is sufficient to systemically counteract aging in zebrafish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191862PMC
http://dx.doi.org/10.1038/s43587-023-00401-5DOI Listing

Publication Analysis

Top Keywords

telomerase expression
16
aging
10
gut-specific telomerase
8
systemic aging
8
telomere shortening
8
telomerase
6
gut
5
expression
4
expression counteracts
4
counteracts systemic
4

Similar Publications

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Epitalon-activated telomerase enhance bovine oocyte maturation rate and post-thawed embryo development.

Life Sci

January 2025

Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea. Electronic address:

Telomerase is highly expressed in oocyte cumulus cells and plays a significant role in follicular development and oocyte maturation. In this study, we hypothesized that in vitro culture conditions may affect telomerase activity during in vitro embryo production (IVP) and that its activation may improve embryo quality. We first examined telomerase protein levels and localization in bovine cumulus-oocyte complexes via immunofluorescence assays.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly type of cancer, with an extremely low five-year overall survival rate. To date, current treatment options primarily involve various chemotherapies, which often prove ineffective and are associated with substantial toxicity. Furthermore, immunotherapies utilizing checkpoint inhibitors have shown limited efficacy in this context, highlighting an urgent need for novel therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!