Knee Osteoarthritis (OA) is one of the most common causes of physical disability worldwide associated with a significant personal and socioeconomic burden. Deep Learning approaches based on Convolutional Neural Networks (CNNs) achieved remarkable improvements in knee OA detection. Despite this success, the problem of early knee OA diagnosis from plain radiographs remains a challenging task. This is due to the high similarity between the X-ray images of OA and non-OA subjects and the disappearance of texture information regarding bone microarchitecture changes in the top layers during the learning process of the CNN models. To address these issues, we propose a Discriminative Shape-Texture Convolutional Neural Network (DST-CNN), which automatically diagnoses early knee OA from X-ray images. The proposed model incorporates a discriminative loss to improve class separability and deal with high inter-class similarities. In addition, a new Gram Matrix Descriptor (GMD) block is embedded in the CNN architecture to compute texture features from several intermediate layers and combine them with the shape features in the top layers. We show that merging texture features with deep ones leads to better prediction of the early stages of OA. Comprehensive experimental results on two large public databases, Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) demonstrate the potential of the proposed network. Ablation studies and visualizations are provided for a detailed understanding of our proposed approach.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-023-01256-1DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
x-ray images
12
discriminative shape-texture
8
shape-texture convolutional
8
neural network
8
knee osteoarthritis
8
early knee
8
top layers
8
texture features
8
knee
5

Similar Publications

Utilizing convolutional neural network (CNN) for orchard irrigation decision-making.

Environ Monit Assess

January 2025

Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.

Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions.

View Article and Find Full Text PDF

VirDetect-AI: a residual and convolutional neural network-based metagenomic tool for eukaryotic viral protein identification.

Brief Bioinform

November 2024

Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.

This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.

View Article and Find Full Text PDF

tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.

J R Stat Soc Ser C Appl Stat

January 2025

Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome.

View Article and Find Full Text PDF

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!