Drought severely affects the growth and yield of soybean plants especially during the flowering period. To investigate the effect of 2-oxoglutarate (2OG) in combination with foliar nitrogen (N) at flowering stage on drought resistance and seed yield of soybean under drought stress. This experiment was conducted in 2021 and 2022 on drought-resistant variety (Hefeng 50) and drought-sensitive variety (Hefeng 43) soybean plants treated with foliar N (DS + N) and 2-oxoglutarate (DS + 2OG) at flowering stage under drought stress. The results showed that drought stress at flowering stage significantly increased leaf malonaldehyde (MDA) content and reduced soybean yield per plant. However, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were significantly increased by foliar N treatment, and 2-oxoglutarate synergistically with foliar N treatment (DS + N + 2OG) was more beneficial to plant photosynthesis. 2-oxoglutarate significantly enhanced plant N content, glutamine synthetase (GS) and glutamate synthase (GOGAT) activity. Furthermore, 2-oxoglutarate increased the accumulation of proline and soluble sugars under drought stress. Under drought stress, soybean seed yield was increased by DS + N + 2OG treatment by 16.48-17.10% and 14.96-18.84% in 2021 and 2022, respectively. Thus, the combination of foliar N and 2-oxoglutarate better mitigated the adverse effects of drought stress and could better compensate for the yield loss of soybean under drought stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160060 | PMC |
http://dx.doi.org/10.1038/s41598-023-34403-5 | DOI Listing |
Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil. Electronic address:
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).
View Article and Find Full Text PDFTransgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!