Achromatic doublets are combinations of two individual lenses designed to focus different wavelengths of light in the same position. Apochromatic optics are improved versions of the achromatic schemes which extend the wavelength range significantly. Both achromatic and apochromatic optics are well-established for visible light. However, X-ray achromatic lenses did not exist until very recently, and X-ray apochromatic lenses have never been experimentally demonstrated. Here, we create an X-ray apochromatic lens system using an appropriate combination of a Fresnel zone plate and a diverging compound refractive lens with a tuned separation distance. The energy-dependent performance of this apochromat was characterized at photon energies between 6.5 and 13.0 keV by ptychographic reconstruction of the focal spot and scanning transmission X-ray microscopy of a resolution test sample. The apochromat delivered a reconstructed focal spot size of 940 × 740 nm. The apochromatic combination shows a four-fold improvement in the chromatic aberration correction range compared to an achromatic doublet configuration. Thus, apochromatic X-ray optics have the potential to increase the focal spot intensity for a wide variety of X-ray applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160054 | PMC |
http://dx.doi.org/10.1038/s41377-023-01157-8 | DOI Listing |
Open Vet J
November 2024
Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
Background: Highly pathogenic avian influenza (HPAI) (H5N1) has been endemic in Egypt for almost two decades, profoundly impacting both the poultry industry and public health. Egypt stands as a prominent epicenter for HPAI H5N1 outbreaks in Africa, marked by the highest number of positive human cases. Despite continuous governmental efforts, prior research underscored the inadequacy of strategies in controlling the virus spread.
View Article and Find Full Text PDFInt J Behav Nutr Phys Act
December 2024
The George Institute for Global Health, University of New South Wales, Level 18, International Towers 3, 300 Barangaroo Ave, Sydney, NSW, 2000, Australia.
Background: Online grocery shopping is a growing source of food purchases in many countries. We investigated the effect of nudging consumers towards purchases of lower sodium products using a web browser extension.
Methods: This trial was conducted among individuals with hypertension who shopped for their groceries online in Australia.
BMC Infect Dis
December 2024
Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, PR China.
Background: This study aimed to evaluate the diagnostic performance of ESAT6-CFP10 (EC) skin test in healthy population and determine the factors influencing the booster effect.
Methods: We conducted a randomized, double-blind, parallel controlled trial in healthy population. The experiment was divided into two stages.
Phys Med
December 2024
Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich (TUM), Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany; Forschungs-Neutronenquelle Heinz Maier-Leibnitz Zentrum (FRM II), Technical University of Munich (TUM), Garching, Germany.
Purpose: Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT).
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!