Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders.

Semin Cell Dev Biol

Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China. Electronic address:

Published: February 2024

The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2023.04.001DOI Listing

Publication Analysis

Top Keywords

hpg axis
28
axis
10
hypothalamus pituitary
8
pituitary gonadal
8
axis hpg
8
hpg
7
epigenetics inflammation
4
inflammation hypothalamus
4
gonadal neuroendocrine
4
neuroendocrine disorders
4

Similar Publications

From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa.

Domest Anim Endocrinol

January 2025

BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:

This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.

View Article and Find Full Text PDF

Azoospermia, defined as the absence of sperm in the ejaculate, is a well-documented consequence of exogenous testosterone (ET) and anabolic-androgenic steroid (AAS) use. These agents suppress the hypothalamic-pituitary-gonadal (HPG) axis, leading to reduced intratesticular testosterone levels and impaired spermatogenesis. This review examines the pathophysiological mechanisms underlying azoospermia and outlines therapeutic strategies for recovery.

View Article and Find Full Text PDF

Background: Tris (2-chloroethyl) phosphate (TCEP), a widely used flame retardant, is widespread in the environment and potentially harmful to organisms. However, the specific mechanisms of TCEP-induced neurological and reproductive toxicity in fish are largely unknown. Turbot (Scophthalmus maximus) is cultivated on a large scale, and the emergence of pollutants with endocrine disrupting effects seriously affects its economic benefits.

View Article and Find Full Text PDF

Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility.

J Adv Res

January 2025

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China. Electronic address:

Background: Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causing multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health, progeny by its ability to cross placental barriers.

View Article and Find Full Text PDF

Kisspeptin and Neurokinin B: roles in reproductive health.

Physiol Rev

January 2025

Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.

Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!