Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Development of high-efficiency adsorbents and exploration of the structure-performance relationship holds exciting implications for removal of aromatic pollutants (APs) from water. Herein, hierarchically porous graphene-like biochars (HGBs) were successfully prepared by KCO simultaneous graphitization and activation of Physalis pubescens husk. The HGBs possess high specific surface area (1406-2369.7 m/g), hierarchically meso-/microporous structure and high graphitization degree. The optimized HGB-2-9 sample exhibits rapid adsorption equilibrium time (t) and high adsorption capacities (Q) for seven widely-used persistent APs with different molecular structures (e.g., phenol: t = 7 min, Q = 191.06 mg/g; methylparaben: t = 12 min Q = 482.15 mg/g). HGB-2-9 also shows a wide pH (3-10) suitability and good ionic strength (0.01-0.5 M NaCl) resistance properties. The effects of the physicochemical properties of HGBs and APs on the adsorption performance were deeply investigated by the adsorption experiments, molecular dynamics (MD) and density functional theory (DFT) simulation. The results demonstrate that the large specific surface area, high graphitization degree and hierarchically porous structure of HGB-2-9 can supply more active sites on accessible surface and facilitate the transport of APs. And the aromaticity and hydrophobicity of APs play the more crucial roles during the adsorption process. Besides, the HGB-2-9 presents good recyclability and high removal efficiency for APs in various real water, which further confirms its potential for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!