Nanodevices based on mesoporous glass nanoparticles enhanced with zinc and curcumin to fight infection and regenerate bone.

Acta Biomater

Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain. Electronic address:

Published: August 2023

Nanotechnology-based approaches are emerging as promising strategies to treat different bone pathologies such as infection, osteoporosis or cancer. To this end, several types of nanoparticles are being investigated, including those based on mesoporous bioactive glasses (MGN) which exhibit exceptional structural and textural properties and whose biological behaviour can be improved by including therapeutic ions in their composition and loading them with biologically active substances. In this study, the bone regeneration capacity and antibacterial properties of MGNs in the SiO-CaO-PO system were evaluated before and after being supplemented with 2.5% or 4% ZnO and loaded with curcumin. in vitro studies with preosteoblastic cells and mesenchymal stem cells allowed determining the biocompatible MGNs concentrations range. Moreover, the bactericidal effect of MGNs with zinc and curcumin against S. aureus was demonstrated, as a significant reduction of bacterial growth was detected in both planktonic and sessile states and the degradation of a pre-formed bacterial biofilm in the presence of the nanoparticles also occurred. Finally, MC3T3-E1 preosteoblastic cells and S. aureus were co-cultured to investigate competitive colonisation between bacteria and cells in the presence of the MGNs. Preferential colonisation and survival of osteoblasts and effective inhibition of both bacterial adhesion and biofilm formation of S. aureus in the co-culture system were detected. Our study demonstrated the synergistic antibacterial effect of zinc ions combined with curcumin and the enhancement of the bone regeneration characteristics of MGNs containing zinc and curcumin to obtain systems capable of simultaneously promoting bone regeneration and controlling infection. STATEMENT OF SIGNIFICANCE: In search of a new approach to regenerate bone and fight infections, a nanodevice based on mesoporous SiO-CaO-PO glass nanoparticles enriched with Zn ions and loaded with curcumin was designed. This study demonstrates the synergistic effect of the simultaneous presence of zinc ions and curcumin in the nanoparticles that significantly reduces the bacterial growth in planktonic state and is capable to degrade pre-formed S. aureus biofilms whereas the nanosystem exhibits a cytocompatible behaviour in the presence of preosteoblasts and mesenchymal stem cells. Based on these results, the designed nanocarrier represents a promising alternative for the treatment of acute and chronic infections in bone tissues, while avoiding the significant current problem of bacterial resistance to antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.04.046DOI Listing

Publication Analysis

Top Keywords

based mesoporous
12
zinc curcumin
12
bone regeneration
12
glass nanoparticles
8
regenerate bone
8
loaded curcumin
8
preosteoblastic cells
8
mesenchymal stem
8
stem cells
8
mgns zinc
8

Similar Publications

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Energetic MOF-derived FeC nanoparticles encased in N,S-codoped mesoporous pod-like carbon nanotubes for efficient oxygen reduction reaction.

Nanoscale

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.

View Article and Find Full Text PDF

To achieve carbon neutrality by 2050, there is a growing need to actively capture carbon dioxide (CO) from the atmosphere. As a method to capture CO directly from the atmosphere, direct air capture (DAC) is attracting attention and amine-based compounds have been extensively studied as CO adsorbents. In this research, we developed thermosetting DAC nanofibers with excellent low-temperature desorption properties and good heat resistance by polymerizing an amine with epoxy.

View Article and Find Full Text PDF

The optimization of nonradiative recombination losses through interface engineering is key to the development of efficient, stable, and hysteresis-free perovskite solar cells (PSCs). In this study, for the first time in solar cell technology, we present a novel approach to interface modification by employing one-dimensional lepidocrocite (henceforth referred to as 1DL) TiO-based nanofilaments, NFs, between the mesoporous TiO (mp TiO) and halide perovskite film in PSCs to improve both the efficiency and stability of the devices. The 1DLs can be easily produced on the kilogram scale starting with cheap and earth-abundant precursor powders, such as TiC, TiN, TiB, etc.

View Article and Find Full Text PDF

Mesoporous polydopamine composite nanoparticles for multimodal therapy based on disrupting the redox homeostasis within tumor cells.

J Colloid Interface Sci

December 2024

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:

Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!