Owing to the essential requirement of phosphorus (P) for growth and development, plants tightly control inorganic phosphate (Pi) homeostasis. SPX-PHR regulatory circuit not only control phosphate homeostasis responses but also root mycorrhization by arbuscular mycorrhiza (AM) fungi. Besides sensing Pi deficiency, SPX (SYG1/Pho81/XPR1) proteins also control the transcription of P starvation inducible (PSI) genes by blocking the activity of PHR1 (PHOSPHATE STARVATION RESPONSE1) homologs in plants under Pi-sufficient conditions. However, the roles of SPX members in Pi homeostasis and AM fungi colonization remain to be fully recognized in tomato. In this study, we identified 17 SPX-domain containing members in the tomato genome. Transcript profiling revealed the high Pi-specific nature of their activation. Four SlSPX members have also induced in AM colonized roots. Interestingly, we found that SlSPX1 and SlSPX2 are induced by P starvation and AM fungi colonization. Further, SlSPX1 and SlSPX2 exhibited varying degrees of interaction with the PHR homologs in this study. Virus-induced gene silencing-based (VIGS) transcript inhibition of these genes alone or together promoted the accumulation of higher total soluble Pi in tomato seedlings and improved their growth. It also enhanced AM fungi colonization in the roots of SlSPX1 and SlSPX2 silenced seedlings. Overall, the present study provides evidence in support of SlSPX members being good candidates for improving AM fungi colonization potential in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111723DOI Listing

Publication Analysis

Top Keywords

slspx1 slspx2
16
fungi colonization
12
root mycorrhization
8
phosphate homeostasis
8
slspx members
8
tomato
5
silencing slspx1
4
slspx2
4
slspx2 promote
4
promote growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!