Long-term tropical cyclones activity shapes forest structure and reduces tree species diversity of U.S. temperate forests.

Sci Total Environ

Institute of Botany of the Czech Academy of Sciences, 25243 Průhonice, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 - Suchdol, Czech Republic.

Published: August 2023

Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the intensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species richness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs. We found that high TC activity (a combination of TC frequency and intensity) leads to a decrease in maximum tree sizes (height and diameter), an increase in tree density and basal area, and a decline in the number of tree species and recruits. We identified TC activity as the strongest predictor of forest structure and species richness in xeric (dry) forests, while it had a weaker impact on hydric (wet) forests. We highlight the sensitivity of forest structure and tree species richness to impacts of likely further increase of TC activity in interaction with climate extremes, especially drought. Our results show that increased TC activity leads to the homogenization of forest structure and reduced tree species richness in U.S. temperate forests. These findings suggest that further declines in tree species richness may be expected because of the projected increase of future levels of TC activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163852DOI Listing

Publication Analysis

Top Keywords

tree species
24
forest structure
20
temperate forests
20
species richness
20
tree
8
diversity temperate
8
structure tree
8
species
7
forests
7
activity
6

Similar Publications

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.

View Article and Find Full Text PDF

Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree.

Int J Mol Sci

January 2025

Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy.

A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock.

View Article and Find Full Text PDF

from Improves Drought Tolerance by Reducing Stomatal Aperture and Inducing ABA Receptor Family Genes in Transgenic Poplar Plants.

Int J Mol Sci

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!