A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental heterogeneity and dispersal limitation simultaneously determine the spatial scaling of different microbial functional groups. | LitMetric

Environmental heterogeneity and dispersal limitation simultaneously determine the spatial scaling of different microbial functional groups.

Sci Total Environ

Institute of Marine Science and Technology, Shandong University, Qingdao, China; Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China. Electronic address:

Published: August 2023

Uncovering the mechanisms driving patterns of diversity across space and through time is of critical importance in microbial community ecology. Previous studies suggest that microorganisms also follow the same spatial scaling patterns as macro-organisms. However, it remains unclear whether different microbial functional groups differ in spatial scaling and how different ecological processes may contribute to such differences. In this study, two typical spatial scaling patterns, taxa-area (TAR) and distance-decay relationships (DDR), were investigated for the whole prokaryotic community and seven microbial functional groups using marker genes, including amoA (AOA), amoA (AOB), aprA, dsrB, mcrA, nifH and nirS. Different microbial functional groups harbored different spatial scaling patterns. Microbial functional groups had weaker TAR slope coefficients than the whole prokaryotic community. The archaeal ammonia-oxidizing group, however, displayed a stronger DDR pattern than the bacterial ammonia-oxidizing group. For both TAR and DDR, rare subcommunities were mainly responsible for the observed microbial spatial scaling patterns. Significant associations between environmental heterogeneity and spatial scaling metrics were observed for multiple microbial functional groups. Dispersal limitation, which positively correlated with phylogenetic breadth, was also strongly associated with the strength of microbial spatial scaling. The results demonstrated that environmental heterogeneity and dispersal limitation simultaneously contributed to microbial spatial scaling patterns. This study links microbial spatial scaling patterns with ecological processes, providing mechanistic insights into the typical diversity patterns followed by microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163854DOI Listing

Publication Analysis

Top Keywords

spatial scaling
40
microbial functional
24
functional groups
24
scaling patterns
24
microbial spatial
16
environmental heterogeneity
12
dispersal limitation
12
microbial
11
spatial
10
scaling
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!