LIMK2, a serine-specific kinase, was discovered as an actin dynamics regulating kinase. Emerging studies have shown its pivotal role in numerous human malignancies and neurodevelopmental disorder. Inducible knockdown of LIMK2 fully reverses tumorigenesis, underscoring its potential as a clinical target. However, the molecular mechanisms leading to its upregulation and its deregulated activity in various diseases largely remain unknown. Similarly, LIMK2's peptide substrate specificity has not been analyzed. This is particularly important for LIMK2, a kinase almost three decades old, as only a handful of its substrates are known to date. As a result, most of LIMK2's physiological and pathological roles have been assigned to its regulation of actin dynamics via cofilin. This review focuses on LIMK2's unique catalytic mechanism, substrate specificity and its upstream regulators at transcriptional, post-transcriptional and post-translational stages. Moreover, emerging studies have unveiled a few tumor suppressors and oncogenes as LIMK2's direct substrates, which in turn have uncovered novel molecular mechanisms by which it plays pleiotropic roles in human physiology and pathologies independent of actin dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316521 | PMC |
http://dx.doi.org/10.1016/j.canlet.2023.216207 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:
The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.
View Article and Find Full Text PDFJ Cell Biol
April 2025
University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFCells
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.
View Article and Find Full Text PDFTrends Cell Biol
January 2025
Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. Electronic address:
The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!