Cross-linking and self-assembly synthesis of tannin-based carbon frameworks cathode for Zn-ion hybrid supercapacitors.

J Colloid Interface Sci

School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

Published: August 2023

Carbon frameworks with well-developed porosity present broad application prospects in energy-related materials, and green preparation still face challenges. Herein, the tannins-derived framework-like carbon material is obtained by cross-linking and self-assembly strategy.The phenolic hydroxyl and quinones in tannin cross-linking react with the amine groups in the methenamine by simple stirring, which drives the self-assembly of tannins and methenamine,contributing to the reaction products being precipitated in solution as aggregates with framework-like structure. The porosity and micromorphology of framework-like structures are further enriched by the thermal stability difference between tannin and methenamine. The methenamine of framework-like structures is entirely removed by the sublimation and decomposition and the tannin is transformed into carbon materials inheriting framework-like structures after the carbonization, which offers the path for rapid electron transport. The framework-like structure, excellent specific surface area and nitrogen doping give the assembled Zn-ion hybrid supercapacitors a superior specific capacitance of 165.3 mAh·g (350.4 F·g). This device could be charged to 1.87 V to power the bulb by using solar panels. This study proves that the tannin-derived framework-like carbon is a promising electrode of the Zn-ion hybrid supercapacitors, which is beneficial for value-added and industrial supercapacitors application of green feedstocks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.04.112DOI Listing

Publication Analysis

Top Keywords

zn-ion hybrid
12
hybrid supercapacitors
12
framework-like structures
12
cross-linking self-assembly
8
carbon frameworks
8
framework-like carbon
8
framework-like structure
8
framework-like
7
carbon
5
self-assembly synthesis
4

Similar Publications

Aqueous zinc ion hybrid supercapacitors (ZIHSCs) are promising as low-cost and safe energy storage devices for next-generation applications. Still, their energy-power performance and durability are far from satisfactory. Here, we present an energy-dense, and ultrastable ZIHSC realized using activated porous carbons derived from chilli-stems.

View Article and Find Full Text PDF

Operando Evolution of a Hybrid Metallic Alloy Interphase for Reversible Aqueous Zinc Batteries.

Angew Chem Int Ed Engl

December 2024

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.

Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase, no such layer forms in AZIBs.

View Article and Find Full Text PDF

Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on TiCT MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) TiCT MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs.

View Article and Find Full Text PDF

Achieving high rate performance without compromising energy density has always been a critical objective for zinc-ion hybrid supercapacitors (ZHSCs). The pore structure and surface properties of carbon cathode materials play a crucial role. We propose utilizing a hybrid particle size (20 and 40 nm) magnesium oxide templates to regulate the pore structure of nitrogen-doped porous carbon derived from the soybean isolate.

View Article and Find Full Text PDF

Functionalized Quasi-Solid-State Electrolytes in Aqueous Zn-Ion Batteries for Flexible Devices: Challenges and Strategies.

Adv Mater

January 2025

School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.

The rapid development of wearable and intelligent flexible devices has posed strict requirements for power sources, including excellent mechanical strength, inherent safety, high energy density, and eco-friendliness. Zn-ion batteries with aqueous quasi-solid-state electrolytes (AQSSEs) with various functional groups that contain electronegative atoms (O/N/F) with tunable electron accumulation states are considered as a promising candidate to power the flexible devices and tremendous progress has been achieved in this prospering area. Herein, this review proposes a comprehensive summary of the recent achievements using the AQSSE in flexible devices by focusing on the significance of different functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!