Microbial community succession in turbulent estuarine environments is key to the understanding of microbial community development in estuaries. Centennial-scale sediment core samples collected from the Liao River Estuary (LRE) channel bar and side beaches were studied for geochemistry and 16S rRNA gene-based bacterial analyses. The results showed that bacterial community composition significantly differed between the sediments of the two sides of the channel bar, with Campilobacterota and Bacteroidota being dominant bacterial phyla in the tributary (T1, T2) and mainstream (MS1, MS2) sediment, respectively. Co-occurrence network of the bacterial community at the genus level showed more centralized and compacted topological features in tributary with weaker hydrodynamic, and the keystone taxas were Halioglobus, Luteolibacter, and Lutibacter in the bacterial community. The bacterial network structure had more edges and larger average degree in LRE sediments from the stage of the year 2016-2009 and the stage before 1939, which was possibly related to hydrodynamic conditions and nutrients. Stochastic processes (dispersal limitation) were the key factors driving bacterial community assembly in the LRE sediments. In addition, total organic carbon (TOC), total sulfur (TS), and grain size were the main deterministic factors affecting the change of bacterial community structure. Relative microbial abundance has the potential to indicate geologically historical environmental changes. This study provided a new perspective to reveal the succession and response of bacterial communities under frequent fluctuation environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2023.105980DOI Listing

Publication Analysis

Top Keywords

bacterial community
20
bacterial
10
bacterial communities
8
liao river
8
river estuary
8
microbial community
8
channel bar
8
lre sediments
8
community
7
succession environmental
4

Similar Publications

Trifluralin (FLL) is extensively used in rapeseed fields in the Qinghai-Tibet Plateau (QTP) region. However, the degradation kinetics of FLL in this area and its impact on environmental microbial communities are not yet known. To investigate the degradation patterns and ecological benefits of FLL, this study established a comprehensive method for detecting FLL residues and selected efficient degrading bacterial strains.

View Article and Find Full Text PDF

Cockroaches as Reservoirs, Vectors, and Potential Sentinels of Multidrug-Resistant Bacteria in Ugandan Communities: A Retrospective Analysis.

Glob Health Epidemiol Genom

January 2025

Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, Room A109, East Lansing, Michigan 48824, USA.

Cockroaches could play a role in the transmission dynamics of antimicrobial-resistant bacteria (ARB) at variable interfaces in Ugandan communities, acting as both reservoirs and vectors. This study investigated the burden and diversity of ARB carried by cockroaches in human settlements in Uganda, so as to understand their role in the spread of these pathogens and their potential as sentinels in antimicrobial resistance (AMR) surveillance programs. A retrospective analysis was conducted on two unpublished studies by Makerere University students.

View Article and Find Full Text PDF

Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.

View Article and Find Full Text PDF

Background: Recent research indicates that the intestinal microbial community, known as the gut microbiota, may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). To understand this relationship, this study used a comprehensive bibliometric analysis to explore and analyze the currently little-known connection between gut microbiota and NAFLD, as well as new findings and possible future pathways in this field.

Aim: To provide an in-depth analysis of the current focus issues and research developments on the interaction between gut microbiota and NAFLD.

View Article and Find Full Text PDF

Background: Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!