A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chlorine and heavy metals removal from municipal solid waste incineration fly ash by electric field enhanced oxalic acid washing. | LitMetric

Chlorine and heavy metals removal from municipal solid waste incineration fly ash by electric field enhanced oxalic acid washing.

J Environ Manage

Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

Published: August 2023

Electric field enhanced oxalic acid (HCO) washing was conducted to examine the simultaneously removal efficiency of heavy metals (HMs) and chlorine, especially insoluble chlorine from municipal solid waste incineration fly ash (MSW FA). Results show that chlorine and HMs can be effectively removed with a total chlorine, As, Ni and Zn removal rate of 99.10%, 79.08%, 75.42% and 71.43%, when the electrode exchange frequencies is 40 Hz, current density is 50 mA/cm, HCO adding amount is 0.5 mol/L and the reaction time is 4 h. Insoluble chlorine removal efficiency is up to 95.32%, much higher than reported studies. And the chlorine content in the residue is lower than 0.14%. Meanwhile, HMs removal efficiency is remarkable, 41.62%-67.51% higher than that of water washing. The high-efficient removal effect is caused by the constantly changing direction of electrons hitting the fly ash surface, which provides more escape channels for internal chlorine and HMs. These results proved that electric field enhanced oxalic acid washing could be a promising method for removing contaminants from MSWI fly ash.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117939DOI Listing

Publication Analysis

Top Keywords

fly ash
16
electric field
12
field enhanced
12
enhanced oxalic
12
oxalic acid
12
removal efficiency
12
chlorine
8
heavy metals
8
municipal solid
8
solid waste
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!