Breeding cattle with low nitrogen emissions has been proposed as a countermeasure against eutrophication due to dairy production. Milk urea content (MU) could potentially serve as a new readily measured indicator trait for nitrogen emissions by cows. Therefore, we estimated genetic parameters related to MU and its relationship with other milk traits. We analysed 4 178 735 milk samples collected between January 2008 and June 2019 from 261 866 German Holstein dairy cows during their first, second, and third lactations. Restricted maximum likelihood estimation was conducted using univariate and bivariate random regression sire models in WOMBAT. We obtained moderate average daily heritability estimates for the daily MU of 0.24 in first lactation cows, 0.23 in second lactation cows, and 0.21 in third lactation cows with average daily genetic SDs of 25.16 mg/kg, 24.93 mg/kg, and 23.75 mg/kg, respectively. Averaged over days in milk, the repeatability estimates were low at 0.41 in first, second, and third lactation cows. A strong positive genetic correlation was found between MU and milk urea yield (MUY; 0.72 on average). In addition, 305-day heritabilities were estimated as 0.50, 0.52, and 0.50 in first, second, and third lactation cows, respectively, with genetic correlations of 0.94 or higher for MU in different lactations. By contrast, the averaged estimates of the genetic correlations between MU and other milk traits were low (-0.07 to 0.15). Moderate heritability estimates clearly allow the possible selection for MU, and the near-zero estimates of genetic correlations indicate no risk of undesired correlated selection responses in other milk traits. However, a relationship still needs to be established between MU as an indicator trait and the target trait, defined as total individual nitrogen emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2023.100767DOI Listing

Publication Analysis

Top Keywords

lactation cows
20
milk traits
16
milk urea
12
nitrogen emissions
12
second third
12
third lactation
12
genetic correlations
12
relationship milk
8
urea content
8
milk
8

Similar Publications

Epidemiological and genetic factors affecting severe epizootic hemorrhagic disease in Spanish Holstein cattle during the Southern Europe outbreak of 2023.

J Dairy Sci

January 2025

Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain.

Epizootic hemorrhagic disease (EHD) is a non-contagious viral infection that can cause important economic losses in dairy farms. This study aimed to identify epidemiological and genetic factors influencing the susceptibility and severity of EHD in Holstein dairy cattle during the 2023 outbreak in Spain. Data from 2852 animals in 7 affected farms from 5 Spanish provinces were used.

View Article and Find Full Text PDF

The aim of our study was to assess the effects of low or high-starch diets with or without palmitic acid (C16:0) supplementation on the yield of milk, milk components, and energy partitioning of primiparous and multiparous dairy cows between mid and late-lactation. Thirty-two Holstein cows, 12 primiparous ([mean ± SD] 163 ± 33 d in milk) and 20 multiparous ([mean ± SD] 179 ± 37 d in milk), were used in a split-plot Latin square design. Parity was considered the main plot, and within each plot, treatments were then randomly assigned in a replicated 4 × 4 Latin square with 21 d periods and balanced for carryover effects.

View Article and Find Full Text PDF

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Plasma, milk and tissue samples were collected from 30 dairy cattle (0.4 to 8.9 years of age) with lifetime exposures to perfluoroalkyl substances (PFAS) removed from a PFAS-contaminated farm and provided PFAS-free feed and water.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!