Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO, and the shell MOF is designed to block HO diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO, N, and HO) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO/HO diffusion selectivity can significantly reduce the effect of water on CO uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197066 | PMC |
http://dx.doi.org/10.1021/acsami.3c03457 | DOI Listing |
Anal Chim Acta
January 2025
Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:
Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China. Electronic address:
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.
Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
Porphyrins bearing the unique 18π electron tetrapyrrolic macrocycles exhibit interesting photophysical and photochemical properties and have been considered as promising ligands for the construction of functionalized metal-organic frameworks (MOFs). The combination of porphyrin-type ligands with lanthanide metals featured with diverse coordination environments to realize the novel functions as well as the diversity of the MOF is thus attractive but challenging. Herein, an unprecedented porphyrin-based samarium MOF (Sm-BCPP) composed of a 5,10-bis(4-carboxyphenyl)-10,20-diphenyl porphyrin (HBCPP) ligand and samarium-formed one-dimensional clusters has been constructed via a solvothermal approach, and the synthesized Sm-BCPP has excellent chemical stabilities, exhibiting red luminescence.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China. Electronic address:
The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!