Common in swine production worldwide, influenza causes significant clinical disease and potential transmission to the workforce. Swine vaccines are not universally used in swine production, due to their limited efficacy because of continuously evolving influenza viruses. We evaluated the effects of vaccination, isolation of infected pigs, and changes to workforce routine (ensuring workers moved from younger pig batches to older pig batches). A Susceptible-Exposed-Infected-Recovered model was used to simulate stochastic influenza transmission during a single production cycle on an indoor hog growing unit containing 4000 pigs and two workers. The absence of control practices resulted in 3,957 pigs [0-3971] being infected and a 0.61 probability of workforce infection. Assuming incoming pigs had maternal-derived antibodies (MDAs), but no control measures were applied, the total number of infected pigs reduced to 1 [0-3958] and the probability of workforce infection was 0.25. Mass vaccination (40% efficacious) of incoming pigs also reduced the total number of infected pigs to 2362 [0-2374] or 0 [0-2364] in pigs assumed to not have MDAs and have MDAs, respectively. Changing the worker routine by starting with younger to older pig batches, reduced the number of infected pigs to 996 [0-1977] and the probability of workforce infection (0.22) in pigs without MDAs. In pigs with MDAs the total number of infected pigs was reduced to 0 [0-994] and the probability of workforce infection was 0.06. All other control practices alone, showed little improvement in reducing total infected pigs and the probability of workforce infection. Combining all control strategies reduced the total number of infected pigs to 0 or 1 with a minimal probability of workforce infection (<0.0002-0.01). These findings suggest that non-pharmaceutical interventions can reduce the impact of influenza on swine production and workers when efficacious vaccines are unavailable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159208 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278495 | PLOS |
Nat Commun
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China. Electronic address:
Streptococcus suis (S. suis) represents a significant bacterial pathogen, with its zoonotic transmission from infected or deceased pigs to humans posing a serious threat to public health. The type IV secretion system (T4SS), a critical virulence factor of S.
View Article and Find Full Text PDFVet Microbiol
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:
NADC34-like porcine reproductive and respiratory syndrome virus 2 (NADC34-like PRRSV-2) is currently a major prevalent strain in Chinese swine industry. Within which, recombination events are frequently detected. Previous studies have shown that the pathogenicity of NADC34-like PRRSV-2 isolates is highly variable.
View Article and Find Full Text PDFZoonoses Public Health
January 2025
Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China.
Introduction: Laboratory animals are widely used in biomedical research. Surveillance of naturally occurring virus in laboratory animals is important to fully understand the results of animal experiment, control laboratory-acquired infections among research personnel and manage viral transmission within laboratory animal populations. This study aimed to investigate the prevalence of multiple RNA viruses in laboratory animals commonly used in China.
View Article and Find Full Text PDFJ Vet Res
December 2024
Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland.
Introduction: The aim of this study was to estimate the occurrence of spp. and other helminth infections in grey wolves in south-eastern Poland.
Material And Methods: Overall, 74 samples of wolf faeces were examined with a multiplex PCR and a system of real-time quantitative PCR methods to detect and identify spp.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!