Metaheuristic techniques have been utilized extensively to predict industrial systems' optimum availability. This prediction phenomenon is known as the NP-hard problem. Though, most of the existing methods fail to attain the optimal solution due to several limitations like slow rate of convergence, weak computational speed, stuck in local optima, etc. Consequently, in the present study, an effort has been made to develop a novel mathematical model for power generating units assembled in sewage treatment plants. Markov birth-death process is adopted for model development and generation of Chapman-Kolmogorov differential-difference equations. The global solution is discovered using metaheuristic techniques, namely genetic algorithm and particle swarm optimization. All time-dependent random variables associated with failure rates are considered exponentially distributed, while repair rates follow the arbitrary distribution. The repair and switch devices are perfect and random variables are independent. The numerical results of system availability have been derived for different values of crossover, mutation, several generations, damping ratio, and population size to attain optimum value. The results were also shared with plant personnel. Statistical investigation of availability results justifies that particle swarm optimization outdoes genetic algorithm in predicting the availability of power-generating systems. In present study a Markov model is proposed and optimized for performance evaluation of sewage treatment plant. The developed model is one that can be useful for sewage treatment plant designers in establishing new plants and purposing maintenance policies. The same procedure of performance optimization can be adopted in other process industries too.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159125 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284848 | PLOS |
Euro Surveill
January 2025
Department for Communicable Disease Prevention and Control, Chief Sanitary Inspectorate, Warsaw, Poland.
In October and December 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected from two wastewater samples in Poland during routine environmental surveillance. The first isolate was characterised and matched previous cVDPV2 isolates detected in Spain in September, as well as in Germany, Finland, and the United Kingdom in November and December 2024. In response to the event, active surveillance for acute flaccid paralysis (AFP) has been strengthened, and the frequency of environmental sample collection has been increased.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.
View Article and Find Full Text PDFPLoS One
January 2025
Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, Colombia.
In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
DTU Aqua, Section for Aquaculture, Technical University of Denmark, Hirtshals, Denmark.
The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!