Floating life (obligate neuston) is a core component of the ocean surface food web. However, only 1 region of high neustonic abundance is known so far, the Sargasso Sea in the Subtropical North Atlantic gyre, where floating life provides critical habitat structure and ecosystem services. Here, we hypothesize that floating life is also concentrated in other gyres with converging surface currents. To test this hypothesis, we collected samples through the eastern North Pacific Subtropical Gyre in the area of the North Pacific "Garbage Patch" (NPGP) known to accumulate floating anthropogenic debris. We found that densities of floating life were higher inside the central NPGP than on its periphery and that there was a positive relationship between neuston abundance and plastic abundance for 3 out of 5 neuston taxa, Velella, Porpita, and Janthina. This work has implications for the ecology of subtropical oceanic gyre ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159152PMC
http://dx.doi.org/10.1371/journal.pbio.3001646DOI Listing

Publication Analysis

Top Keywords

floating life
16
north pacific
12
floating
6
life
5
high concentrations
4
concentrations floating
4
floating neustonic
4
neustonic life
4
life plastic-rich
4
north
4

Similar Publications

Risk-based bridge life cycle cost and environmental impact assessment considering climate change effects.

Sci Rep

January 2025

Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

To enhance sustainability and resilience against climate change in infrastructure, a quantitative evaluation of both environmental impact and cost is important within a life cycle framework. Climate change effects can lead performance deterioration in bridge components during their operational phase, highlighting the necessity for a risk-based evaluation process aligned with maintenance strategies. This study employs a two-phase life cycle assessments (LCA) framework.

View Article and Find Full Text PDF

A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.

View Article and Find Full Text PDF

Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.

View Article and Find Full Text PDF

Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions.

J Phys Chem B

December 2024

Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan.

We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu and Ni but was insensitive to Na, Ca, and Mg, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu and Ni but was insensitive to Na, Ca, and Mg.

View Article and Find Full Text PDF

use multiple mechanisms to disseminate from the intestinal lamina propria to the mesenteric lymph nodes.

Microbiol Spectr

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that associated with both monocytes and dendritic cells in the intestinal lamina propria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!