A potential method for future breast cancer screening is 3-D ultrasound computed tomography (USCT). The utilized image reconstruction algorithms require transducer characteristics fundamentally different from conventional transducer arrays, leading to the necessity of a custom design. This design has to provide random transducer positioning, isotropic sound emission as well as a large bandwidth and wide opening angle. In this article, we present a new transducer array design to be utilized in a third generation 3-D USCT system. Each system requires 128 cylindrical arrays, mounted into the shell of a hemispherical measurement vessel. Each new array contains a 0.6 mm thick disk with 18 single PZT fibers (0.46 mm diameter) embedded in a polymer matrix. Randomized positioning of the fibers is achieved with an arrange-and-fill process. The single-fiber disks are connected on both ends with a matching and backing disk using simple stacking and adhesives. This enables fast and scalable production. We characterized the acoustic field of 54 transducers with a hydrophone. Measurements in 2-D showed isotropic acoustic fields. The mean bandwidth and opening angle are 131% and 42°, respectively (both -10 dB). The large bandwidth arises from two resonances within the utilized frequency range. Parameter studies using different models showed that the realized design is already close to the achievable optimum for the transducer technology used. Two 3-D USCT systems were equipped with the new arrays. First images show promising results, with an increase in image contrast and a significant reduction of artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2023.3272970DOI Listing

Publication Analysis

Top Keywords

transducer arrays
8
3-d ultrasound
8
ultrasound computed
8
computed tomography
8
large bandwidth
8
opening angle
8
3-d usct
8
transducer
5
single-fiber transducer
4
arrays
4

Similar Publications

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Objective: This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.

Methods: Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU).

View Article and Find Full Text PDF

Objective: To evaluate the added value of dynamic contrast-enhanced ultrasound (DCE-US) analysis in pre-operative differential diagnosis of small (≤20 mm) solid pancreatic lesions (SPLs).

Methods: In this retrospective study, patients with biopsy or surgerical resection and histopathologically confirmed small (≤20 mm) SPLs were included. One wk before biopsy/surgery, pre-operative B-mode ultrasound and contrast-enhanced ultrasound were performed.

View Article and Find Full Text PDF

Purpose: High-frequency ultrasound (HFUS) of muscle and nerve has the potential to be a reliable, responsive, and informative biomarker of disease progression for individuals with amyotrophic lateral sclerosis (ALS). High-frequency ultrasound is not able to visualize median nerve fascicles to the same extent as ultra-high-frequency ultrasound (UHFUS). Evaluating the number and size of fascicles within a nerve may facilitate a better understanding of nerve diseases.

View Article and Find Full Text PDF

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!