A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diverse Sample Generation: Pushing the Limit of Generative Data-Free Quantization. | LitMetric

Generative data-free quantization emerges as a practical compression approach that quantizes deep neural networks to low bit-width without accessing the real data. This approach generates data utilizing batch normalization (BN) statistics of the full-precision networks to quantize the networks. However, it always faces the serious challenges of accuracy degradation in practice. We first give a theoretical analysis that the diversity of synthetic samples is crucial for the data-free quantization, while in existing approaches, the synthetic data completely constrained by BN statistics experimentally exhibit severe homogenization at distribution and sample levels. This paper presents a generic Diverse Sample Generation (DSG) scheme for the generative data-free quantization, to mitigate detrimental homogenization. We first slack the statistics alignment for features in the BN layer to relax the distribution constraint. Then, we strengthen the loss impact of the specific BN layers for different samples and inhibit the correlation among samples in the generation process, to diversify samples from the statistical and spatial perspectives, respectively. Comprehensive experiments show that for large-scale image classification tasks, our DSG can consistently quantization performance on different neural architectures, especially under ultra-low bit-width. And data diversification caused by our DSG brings a general gain to various quantization-aware training and post-training quantization approaches, demonstrating its generality and effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3272925DOI Listing

Publication Analysis

Top Keywords

data-free quantization
16
generative data-free
12
diverse sample
8
sample generation
8
quantization
6
generation pushing
4
pushing limit
4
limit generative
4
data-free
4
quantization generative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!