It is well-known that muscle regeneration declines with aging, and aged muscles undergo degenerative atrophy or sarcopenia. While exercise and acute injury are both known to induce muscle regeneration, the molecular signals that help trigger muscle regeneration have remained unclear. Here, mass spectrometry imaging (MSI) is used to show that injured muscles induce a specific subset of prostanoids during regeneration, including PGG1, PGD2, and the prostacyclin PGI2. The spike in prostacyclin promotes skeletal muscle regeneration via myoblasts, and declines with aging. Mechanistically, the prostacyclin spike promotes a spike in PPARγ/PGC1a signaling, which induces a spike in fatty acid oxidation (FAO) to control myogenesis. LC-MS/MS and MSI further confirm that an early FAO spike is associated with normal regeneration, but muscle FAO became dysregulated during aging. Functional experiments demonstrate that the prostacyclin-PPARγ/PGC1a-FAO spike is necessary and sufficient to promote both young and aged muscle regeneration, and that prostacyclin can synergize with PPARγ/PGC1a-FAO signaling to restore aged muscles' regeneration and physical function. Given that the post-injury prostacyclin-PPARγ-FAO spike can be modulated pharmacologically and via post-exercise nutrition, this work has implications for how prostacyclin-PPARγ-FAO might be fine-tuned to promote regeneration and treat muscle diseases of aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375192 | PMC |
http://dx.doi.org/10.1002/advs.202301519 | DOI Listing |
Toxicon
January 2025
National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
J Clin Med
January 2025
Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).
View Article and Find Full Text PDFBiomolecules
January 2025
Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA.
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!