Study Question: What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly?
Summary Answer: Deficiency in IQCN causes sperm flagellar assembly defects and male infertility.
What Is Known Already: The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization. Variants in IQCN lead to total fertilization failure and defective acrosome structure phenotypes. However, the function of IQCN in sperm flagellar assembly is still unknown.
Study Design, Size, Duration: Fifty men with infertility were recruited from a university-affiliated center from January 2014 to October 2022.
Participants/materials, Setting, Methods: Genomic DNA was extracted from the peripheral blood samples of all 50 individuals for whole-exome sequencing. The ultrastructure of the spermatozoa was assessed by transmission electron microscopy. Computer-assisted sperm analysis (CASA) was used to test the parameters of curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). An Iqcn knockout (Iqcn-/-) mouse model was generated by CRISPR-Cas9 technology to evaluate sperm motility and the ultrastructure of the flagellum. Hyperactivation and sperm fertilizing ability were assessed in a mouse model. Immunoprecipitation followed by liquid chromatography-mass spectrometry was used to detect IQCN-binding proteins. Immunofluorescence was used to validate the localization of IQCN-binding proteins.
Main Results And The Role Of Chance: Biallelic variants in IQCN (c.3913A>T and c.3040A>G; c.2453_2454del) were identified in our cohort of infertile men. The sperm from the affected individuals showed an irregular '9 + 2' structure of the flagellum, which resulted in abnormal CASA parameters. Similar phenotypes were observed in Iqcn-/- male mice. VSL, VCL, and VAP in the sperm of Iqcn-/- male mice were significantly lower than those in Iqcn+/+ male mice. Partial peripheral doublet microtubules (DMTs) and outer dense fibers (ODFs) were absent, or a chaotic arrangement of DMTs was observed in the principal piece and end piece of the sperm flagellum. Hyperactivation and IVF ability were impaired in Iqcn-/- male mice. In addition, we investigated the causes of motility defects and identified IQCN-binding proteins including CDC42 and the intraflagellar transport protein families that regulate flagellar assembly during spermiogenesis.
Limitations, Reasons For Caution: More cases are needed to demonstrate the relation between IQCN variants and phenotypes.
Wider Implications Of The Findings: Our findings expand the genetic and phenotypic spectrum of IQCN variants in causing male infertility, providing a genetic marker for sperm motility deficiency and male infertility.
Study Funding/competing Interest(s): This work was supported by the National Natural Science Foundation of China (81974230 and 82202053), the Changsha Municipal Natural Science Foundation (kq2202072), the Hunan Provincial Natural Science Foundation (2022JJ40658), and the Scientific Research Foundation of Reproductive and Genetic Hospital of CITIC-Xiangya (YNXM-202114 and YNXM-202201). No conflicts of interest were declared.
Trial Registration Number: N/A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/dead079 | DOI Listing |
Mol Hum Reprod
June 2023
Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University (900th Hospital of the Joint Logistics Force), Fuzhou, China.
Fertilization failure is a significant manifestation of unexplained male infertility. Previous work has suggested a genetic origin. In this study, we report on a man with unexplained infertility from a large consanguineous marriage family.
View Article and Find Full Text PDFHum Reprod
July 2023
Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.
Study Question: What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly?
Summary Answer: Deficiency in IQCN causes sperm flagellar assembly defects and male infertility.
What Is Known Already: The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization.
EMBO Mol Med
December 2022
Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, China.
Total fertilization failure (TFF) is an important cause of infertility; however, the genetic basis of TFF caused by male factors remains to be clarified. In this study, whole-exome sequencing was firstly used to screen for genetic causes of TFF after intracytoplasmic sperm injection (ICSI), and homozygous variants in the novel gene IQ motif-containing N (IQCN) were identified in two affected individuals with abnormal acrosome structures. Then, Iqcn-knockout mice were generated by CRISPR-Cas9 technology and showed that the knockout male mice resembled the human phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!