Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1062936X.2023.2207039DOI Listing

Publication Analysis

Top Keywords

active inactive
12
lda models
12
classification models
8
hydroxylated polychlorinated
8
polychlorinated biphenyls
8
thyroid hormone
8
hormone receptor
8
inactive agonists
8
training set
8
set compounds
8

Similar Publications

Physical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (n =39,160) and assessed functional enrichment of identified proteins.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Background: Monocytes are evolutionarily preserved innate immune cells that play essential roles in immune response regulation. Three activated monocyte subsets-classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)-are associated with systemic lupus erythematosus (SLE) progression. This study aims to determine the association of monocyte subsets with SLE disease activity.

View Article and Find Full Text PDF

Surveying helix 12 dynamics within constitutively active estrogen receptors using bipartite tetracysteine display.

J Biol Chem

January 2025

Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.

Somatic Y537S and D538G mutations within the estrogen receptor alpha ligand-binding domain (ERα-LBD) have been linked to enhanced cell proliferation, survival, and metastases in ER-positive breast cancers. Such mutations are thought to confer ligand-independent receptor activation by increasing the flexibility of helix 12 (H12), a segment within the ERα-LBD that acts as a dynamic regulator of ERα activity. We employed bipartite tetracysteine display coupled with the biarsenical profluorophore FlAsH-EDT to monitor ligand-independent structural transitions of H12 in ERα-LBDs that include Y537S or D538G mutations.

View Article and Find Full Text PDF

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!