Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The creation of nanostructure is profound for the generation of nanobiosensors in several medical diagnosis. Here, we employed an aqueous hydrothermal route using Zinc-oxide (ZnO) and Gold (Au), which under optimal conditions formed an ultra-crystalline rose-like nanostructure textured with nanowires on the surface, coined as "spiked nanorosette." The spiked nanorosette structures was further characterized to possess crystallites of ZnO and Au grains with average sizes of 27.60 and 32.33 nm, respectively. The intensity for both ZnO (002) and Au (111) planes of the nanocomposite was inferred to be controlled by fine-tuning the percentage of Au nanoparticles doped in the ZnO/Au matrix, as referred by X-ray diffraction analysis. The formation of ZnO/Au-hybrid nanorosettes were additionally verified by the distinct corresponding peaks from photoluminescence and X-ray photoelectron spectroscopy, supported by electrical validations. The biorecognition properties of the spiked nanorosettes were also examined using custom targeted and non-target DNA sequences. The DNA targeting capabilities of the nanostructures were analyzed by Fourier Transform Infrared and electrochemical impedance spectroscopy. The fabricated nanowire-embedded nanorosette exhibited a detection limit at the lower picomolar range of 1 × 10-12 M, with high selectivity, stability and reproducibility and good linearity, under optimal conditions. Impedance-based techniques are more sensitive to the detection of nucleic acid molecule whereas this novel spiked nanorosette demonstrate promising attributes as excellent nanostructures for nanobiosensor developments and their potential future application for nucleic-acids or disease diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!